Login Page - Create Account

List of Mathematical Symbols


List of Mathematical Symbols

This section lists the mathematical symbols that are used in Technical Studies Reference.

Common Mathematical Operations

This section lists and explains some of the mathematical operations that are frequently used in technical studies.

Ceiling Function

The ceiling function returns the least integer that is greater than a given number. The notation for the ceiling function of a number \(X\) is \(\lceil X \rceil\).

Example: \(\lceil 3.3 \rceil = 4\)

Floor Function

The floor function returns the greatest integer that is less than a given number. The notation for the floor function of a number \(X\) is \(\lfloor X \rfloor\).

Example: \(\lfloor 5.8 \rfloor = 5\)

Summation

We make frequent use of Sigma (\(\Sigma\)) notation for summation.

For the list of \(n\) numbers \(X_1,X_2,...,X_n\), we denote their sum as follows.

\(\displaystyle{\sum_{i = 1}^n}X_i = X_1 + X_2 + \cdot\cdot\cdot X_n\)

  • \(\Sigma\) is called the summation sign.
  • \(i\) is called the index of summation, or simply the index. It functions as a counter from \(1\) to \(n\).
  • \(1\) is called the lower limit of summation.
  • \(n\) is called the upper limit of summation.
  • \(X_i\) is called the summand.
  • Parameters

    Parameters are variables whose values are either entered by the user as Inputs, calculated from Input values, automatically generated by Auto Looping, or automatically generated by internal looping.

    • \(c\) - Smoothing Constant - Appears in several moving averages, such as Moving Average - Adaptive and Moving Average - Exponential. This may be subscripted, e.g. \(c_F\), \(c_S\), etc.
    • \(i\) - Variable Chart Bar Index Value - Usually varies from some past value of the Index up to the Current Index Value \(t\).
    • \(k\) - Offset
    • \(\lambda\) - Lag - Appears in Moving Average - Zero Lag Exponential.
    • \(\mu\) - ATR Multiplier - Appears in Volatility Trend Indicator.
    • \(n\) - Length - This may be subscripted, e.g. \(n_1\), \(n_{RSI}\).
    • \(s\) - Tick Size - This is set through Chart >> Chart Settings >> Main Settings.
    • \(t\) - Current Chart Bar Index Value
    • \(v\) - Multiplier (in T3) or Value (in Bands/Envelope)

    Random Variables

    Random Variables are variables whose values are determined by the outcome of an experiment. For our purposes, Random Variables are almost always volumes, prices or Statistical Functions of prices.

    When we refer to the value of a Random Variable at Index \(t\), we use a subscript to indicate this. For instance, the value of the Random Variable Input Data \(X\) at Index \(t\) is denoted as \(X_t\).

    • \(C\) - Closing Price - This may be superscripted, e.g. \(C^{(1)}\), \(C^{(HA)}\), etc.
    • \(H\) - High Price - This may be superscripted, e.g. \(H^{(1)}\), \(H^{(HA)}\), etc.
    • \(L\) - Low Price - This may be superscripted, e.g. \(L^{(1)}\), \(L^{(HA)}\), etc.
    • \(N\) - Number of Trades - This may be subscripted, e.g. \(N_{ask}\), \(N_{bid}\), etc.
    • \(O\) - Opening Price - This may be superscripted, e.g. \(O^{(1)}\), \(O^{(HA)}\), etc.
    • \(P\) - Price - This may be subscripted, e.g. \(P_{ask}\), \(P_{bid}\), etc.
    • \(\overline{P}\) - Average Price
    • \(V\) - Volume - This may be subscripted, e.g. \(V_{ask}\), \(V_{bid}\), etc.
    • \(X\) - Input Data - These may be superscripted, e.g. \(X^{(1)}\), \(X^{(2)}\).

    Statistical Functions

    Statistical Functions take on a value at each Current Index Value \(t\). Unless otherwise stated, the value of a Statistical Function is 0 prior to the starting value of \(t\). We refer to the value of a Statistical Function at Index \(t\) by using a subscript, and we write any Inputs for the Statistical Function in parentheses. For instance, the value of the Statistical Function Moving Average - Simple of Input Data \(X\) with Length \(n\) at Index \(t\) is denoted as \(MA_t(X,n)\).

    When a Statistical Function is used as a Random Variable for another Statistical Function, we indicate this by omitting its subscript. For instance, the value of the Exponential Moving Average of \(X\) with Length \(n\) at Index \(t\) is denoted as \(EMA_t(X,n)\). If we take the Exponential Moving Average of \(EMA_t(X,n)\), again with Length \(n\), we denote its value at Index \(t\) as \(EMA_t(EMA(X,n),n)\). Here, \(EMA(X,n)\) is a random variable corresponding to the first Exponential Moving Average.

    When we list the arguments of Statistical Functions, we list only those that have numerical values and that are input by the user. We omit all others. As an example, in the notation for the Bar Difference study, we omit the Input Calculate Difference in Price Ticks from the list of arguments because it is not numerical. As another example, in the notation for the Q Stick study, we omit the random variables \(C\) and \(O\) from the list of arguments because these are not input by the user.

    When alphabetizing the list of Statistical Functions, we observe the following conventions.

  • Symbols precedence over letters. This is why \(\% R_t\left(X^{(High)},X^{(Low)},X^{(Last)},n\right)\) is listed first.
  • Subscripts and superscripts are not considered when alphabetizing names of Statistical Functions. This is why \(\max_t(X,n)\) is listed before \(MaxRSI_t(n,n_{HL})\).
  • When the name of a Statistical Function begins with a Greek letter, the English spelling of the letter is used to determine alphabetization. For example, \(\Delta MA_t(X,n_1,n_2)\) is treated as though it was spelled "D-E-L-T-A-M-A".

  • *Last modified Saturday, 14th October, 2017.