Login Page - Create Account

Technical Studies Reference


This study calculates and displays the DeMarker study for the Price Data.

Let \(H_t\) and \(L_t\) be the values of the High and Low Prices, respectively, at Index \(t\), and let \(n\) be the Length Input. We denote the Max DeMarker and the Min DeMarker at Index \(t\) as \(DeM^{(\max)}_t\) and \(DeM^{(\min)}_t\), respectively, and we compute them as follows.

\(DeM^{(\max)}_t =\left\{ \begin{matrix} H_t - H_{t - 1} & H_t > H_{t - 1} \\ 0 & H_t \leq H_{t - 1} \end{matrix}\right .\)

\(DeM^{(\min)}_t =\left\{ \begin{matrix} L_{t - 1} - L_t & L_t < L_{t - 1} \\ 0 & L_t \geq L_{t - 1} \end{matrix}\right .\)

We denote the value of the DeMarker at Index \(t\) as \(DeM_t(n)\), and we compute it in terms of Simple Moving Averages of \(DeM^{(\max)}_t\) and \(DeM^{(\min)}_t\) for \(t \geq n\) as follows.

\(\displaystyle{DeM_t(n) =\left\{ \begin{matrix} \frac{SMA_t\left({DeM}^{(\max)},n\right)}{SMA_t\left({DeM}^{(\max)},n\right) + SMA_t\left({DeM}^{(\min)},n\right)} & SMA_t\left({DeM}^{(\max)},n\right) + SMA_t\left({DeM}^{(\min)},n\right) \neq 0 \\ DeM_{t - 1}(n) & SMA_t\left(DeM^{(\max)},n\right) + SMA_t\left(DeM^{(\min)},n\right) = 0 \end{matrix}\right .}\)



The spreadsheet below contains the formulas for this study in Spreadsheet format. Save this Spreadsheet to the Data Files Folder.

Open it through File >> Open Spreadsheet.


*Last modified Thursday, 13th June, 2019.