# Technical Studies Reference

### DeMarker

This study calculates and displays the DeMarker study for the Price Data.

Let $$H_t$$ and $$L_t$$ be the values of the High and Low Prices, respectively, at Index $$t$$, and let $$n$$ be the Length Input. We denote the Max DeMarker and the Min DeMarker at Index $$t$$ as $$DeM^{(\max)}_t$$ and $$DeM^{(\min)}_t$$, respectively, and we compute them as follows.

$$DeM^{(\max)}_t =\left\{ \begin{matrix} H_t - H_{t - 1} & H_t > H_{t - 1} \\ 0 & H_t \leq H_{t - 1} \end{matrix}\right .$$

$$DeM^{(\min)}_t =\left\{ \begin{matrix} L_{t - 1} - L_t & L_t < L_{t - 1} \\ 0 & L_t \geq L_{t - 1} \end{matrix}\right .$$

We denote the value of the DeMarker at Index $$t$$ as $$DeM_t(n)$$, and we compute it in terms of Simple Moving Averages of $$DeM^{(\max)}_t$$ and $$DeM^{(\min)}_t$$ for $$t \geq n$$ as follows.

$$\displaystyle{DeM_t(n) =\left\{ \begin{matrix} \frac{SMA_t\left({DeM}^{(\max)},n\right)}{SMA_t\left({DeM}^{(\max)},n\right) + SMA_t\left({DeM}^{(\min)},n\right)} & SMA_t\left({DeM}^{(\max)},n\right) + SMA_t\left({DeM}^{(\min)},n\right) \neq 0 \\ DeM_{t - 1}(n) & SMA_t\left(DeM^{(\max)},n\right) + SMA_t\left(DeM^{(\min)},n\right) = 0 \end{matrix}\right .}$$