Login Page - Create Account

Technical Studies Reference


SuperTrend

This study calculates and displays the SuperTrend Indicator.

Let \(X\) and \(C\) be random variables denoting the Input Data and Close Price, respectively, and let \(X_t\) and \(C_t\) be their values at Index \(t\). Let the Inputs ATR Period and ATR Multiplier be denoted as \(n\) and \(k\), respectively.

We begin by computing Top Band - Basic and Bottom Band - Basic, whose values at Index \(t\) are denoted as \(TBB_t^{(ST)}(X,n,k)\) and \(BBB_t^{(ST)}(X,n,k)\), respectively. We compute them in terms of the Average True Range as follows.

\(TBB_t^{(ST)}(X,n,k) = X_t + k \cdot ATR(n)\)
\(BBB_t^{(ST)}(X,n,k) = X_t - k \cdot ATR(n)\)

The moving average type is determined by the ATR Moving Average Type Input.

We then calculate the Top Band, \(TB_t^{(ST)}(X,n,k)\) and Bottom Band, \(BB_t^{(ST)}(X,n,k)\), as follows.

\(TB_t^{(ST)}(X,n,k) = \left\{ \begin{matrix} TBB_t^{(ST)}(X,n,k) & TBB_t^{(ST)}(X,n,k) < TB_{t - 1}^{(ST)}(X,n,k) \space or \space C_{t - 1} > TB_{t - 1}^{(ST)}(X,n,k) \\ TB_{t - 1}^{(ST)}(X,n,k) & TBB_t^{(ST)}(X,n,k) \geq TB_{t - 1}^{(ST)}(X,n,k) \space or \space C_{t - 1} \leq TB_{t - 1}^{(ST)}(X,n,k) \end{matrix}\right .\)

Finally, we denote the SuperTrend at Index \(t\) as \(ST_t(X,n,k)\), and we compute it as follows.

For \(t = 0\), \(ST_0(X,n,k) = TB_0^{(ST)}(X,n,k)\). For \(t > 0\), we have the following. \(ST_t(X,n,k) = \left\{ \begin{matrix} TB_t^{(ST)}(X,n,k) & (ST_{t - 1}(X,n,k) = TB_{t - 1}^{(ST)}(X,n,k) \space and \space C_t < TB_t^{(ST)}(X,n,k)) \space or \space (ST_{t - 1}(X,n,k) = BB_{t - 1}^{(ST)}(X,n,k) \space and \space C_t < BB_t^{(ST)}(X,n,k)) \\ BB_{t - 1}^{(ST)}(X,n,k) & (ST_{t - 1}(X,n,k) = TB_{t - 1}^{(ST)}(X,n,k) \space and \space C_t > TB_t^{(ST)}(X,n,k)) \space or \space (ST_{t - 1}(X,n,k) = BB_{t - 1}^{(ST)}(X,n,k) \space and \space C_t > BB_t^{(ST)}(X,n,k)) \\ ST_{t - 1}(X,n,k) & Otherwise \end{matrix}\right .\)

Inputs


*Last modified Monday, 03rd October, 2022.