Login Page - Create Account

# Technical Studies Reference

### Renko Bar Predictor

This study calculates and displays the projected High and Low for Renko Bars. The Renko Bar types are selected via Chart >> Chart Settings >> Main Settings >> Bar Period Type. The Range Bar types are listed below. They can only be used on Intraday Charts.

Let $$O_t^{(R)}$$ and $$C_t^{(R)}$$ denote the Renko Open and Close, respectively, at Index $$t$$.

Let $$s$$ denote the Tick Size. Let $$\tau_R$$, $$\tau_{TO}$$, and $$\tau_{RO}$$ denote the Bar Size, Trend Open Offset, and Reversal Open Offset, respectively. These are all controlled via Chart >> Chart Settings >> Main Settings >> Setting. If the Renko Bar type is Renko Bar (in ticks), then $$\tau_{TO} = \tau_{RO} = 0$$.

Let the Predicted Renko High and Renko Low at Index $$t$$ be denoted as $$H_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO})$$ and $$L_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO})$$, respectively. If the Renko Bar type is anything other than Flex Renko Bar Inverse Settings, then the High and Low Predicted Prices are calculated for the last chart bar only as follows.

$$H_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO}) = \left\{ \begin{matrix} C_{t - 1}^{(R)} - \tau_{RT} \cdot s + \tau_R \cdot s & O_{t - 1}^{(R)} < C_{t - 1}^{(R)} \\ C_{t - 1}^{(R)} - \tau_{RO} \cdot s + 2\tau_R \cdot s & O_{t - 1}^{(R)} \geq C_{t - 1}^{(R)} \end{matrix}\right .$$

$$L_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO}) = \left\{ \begin{matrix} C_{t - 1}^{(R)} + \tau_{RO} \cdot s - 2\tau_R \cdot s & O_{t - 1}^{(R)} < C_{t - 1}^{(R)} \\ C_{t - 1}^{(R)} + \tau_{TO} \cdot s - \tau_R \cdot s & O_{t - 1}^{(R)} \geq C_{t - 1}^{(R)} \end{matrix}\right .$$

If the Renko Bar Type is Flex Renko Bar Inverse Settings, then the following formulas are used.

$$H_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO}) = \left\{ \begin{matrix} C_{t - 1}^{(R)} + \tau_{RT} \cdot s & O_{t - 1}^{(R)} < C_{t - 1}^{(R)} \\ C_{t - 1}^{(R)} + \tau_{RO} \cdot s & O_{t - 1}^{(R)} \geq C_{t - 1}^{(R)} \end{matrix}\right .$$

$$L_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO}) = \left\{ \begin{matrix} C_{t - 1}^{(R)} - \tau_{RO} \cdot s & O_{t - 1}^{(R)} < C_{t - 1}^{(R)} \\ C_{t - 1}^{(R)} - \tau_{TO} \cdot s & O_{t - 1}^{(R)} \geq C_{t - 1}^{(R)} \end{matrix}\right .$$

#### Inputs

• This study has no Inputs.

#### Spreadsheet

The spreadsheet below contains the formulas for this study in Spreadsheet format. Save this Spreadsheet to the Data Files Folder.

Open it through File >> Open Spreadsheet.

*Last modified Friday, 03rd April, 2020.