
Grok Prompt: how can I debug my Sierra Chart Advanced Custom Study .dll 

Debugging a Sierra Chart Advanced Custom Study DLL involves setting up your 

development environment properly and using tools like Visual Studio to step through 

your code. Here’s a straightforward guide to help you get started: 

First, ensure your DLL is built with debugging support. Sierra Chart allows you to compile 

your custom study using Visual C++ in debug mode, which generates the necessary files 

to trace your code. Open Sierra Chart, go to the "Analysis" menu, and select "Build 

Custom Studies DLL." In the window that appears, choose "File" then "Select Files" to 

pick your .cpp source file from the ACS_Source folder (usually found in your Sierra Chart 

installation directory, like C:\SierraChart\ACS_Source). Next, under the "Build" menu, 

select "Build with Visual C++ - Debug." If you haven’t installed the Visual C++ compiler 

yet, pick "Install Visual C++ Compiler" from the same menu and follow the prompts—it 

takes a bit of time, but it’s a one-time setup. Once the build succeeds, you’ll see a .dll 

and a .pdb file (Program Debug Database) in your Data folder (typically 

C:\SierraChart\Data). These files are crucial for debugging. 

Now, launch Microsoft Visual Studio—I assume you’ve got it installed since it’s the 

standard for this process. Open your .cpp file by going to "File" > "Open" > "File" and 

navigating to the ACS_Source folder. Add your custom study to a chart in Sierra Chart 

via "Analysis" > "Studies" > "Add Custom Study," selecting your DLL and study name. 

Back in Visual Studio, attach it to Sierra Chart’s process: go to "Debug" > "Attach to 

Process," ensure "Attach to" is set to "Native," and pick either SierraChart.exe (32-bit) or 

SierraChart_64.exe (64-bit) from the list, depending on your Sierra Chart version, then 

hit "Attach." 

To inspect your code, set a breakpoint. In Visual Studio, click in the gutter (the gray strip 

left of the code lines) next to a line in your study function—say, inside the scsf_ function 

where your logic lives. A red dot appears, marking the spot where execution will pause. 

Return to Sierra Chart and force a recalculation by selecting "Chart" > "Recalculate." This 

triggers your study, and Visual Studio will halt at the breakpoint. From there, use "Step 

Over" (F10) to move line-by-line without diving into function calls, "Step Into" (F11) to 

dig into functions, or "Continue" (F5) to run until the next breakpoint. Watch variables in 

Visual Studio’s "Locals" or "Watch" windows to see what’s happening. 

If nothing pauses, double-check: Is your study on the chart? Did the DLL build correctly 

with debug settings? Is Visual Studio attached to the right process? Sierra Chart only 

calls your study function during specific events (like chart updates), so recalculating is 

key to hitting your breakpoint. Also, keep Sierra Chart running normally while 

attached—GUI freezing only happens when paused at a breakpoint, which is expected. 

For trickier issues, log messages to Sierra Chart’s Message Log. In your code, add 

something like sc.AddMessageToLog(" Checkpoint reached", 1) to track execution 



without breakpoints. Open the log via "Window" > "Message Log" to see your output. 

This helps confirm your study’s running and where it might derail. 

That’s the gist—build in debug mode, attach Visual Studio, set breakpoints, and step 

through. It’s hands-on, but you’ll catch bugs faster once you get the rhythm. Anything 

specific tripping you up with your study? 

 

Grok Prompt: how can I watch variable values 

To watch variable values while debugging your Sierra Chart Advanced Custom Study DLL 

in Visual Studio, you can use a few built-in tools that make it easy to track what’s 

happening in your code as it runs. Here’s how to do it: 

Once you’ve attached Visual Studio to SierraChart.exe (or the 64-bit version) and set a 

breakpoint in your study function (like I described earlier), trigger the breakpoint by 

recalculating the chart in Sierra Chart ("Chart" > "Recalculate"). When execution pauses 

at the breakpoint, you’ve got several options to inspect your variables. 

The simplest is the Locals window. In Visual Studio, go to "Debug" > "Windows" > 

"Locals" (or press Alt+4 if it’s not already visible). This automatically shows all variables 

in the current scope—like your study’s SCSubgraphRef or SCInputRef objects, or any 

local integers, floats, etc. As you step through the code with F10 (Step Over) or F11 

(Step Into), the values update in real-time. For example, if you’ve got float myValue = 

sc.Close[sc.Index], you’ll see myValue change as the chart processes each bar. 

If you want to focus on specific variables, use the Watch window. Right-click a variable 

in your code (say, sc.Index or a custom one like int counter), select "Add to Watch," and 

it’ll appear in the Watch 1 window (open it via "Debug" > "Windows" > "Watch" > 

"Watch 1" if needed). You can also manually type expressions, like sc.Close[sc.Index - 1] 

or counter + 5, to evaluate them on the fly. The Watch window persists across 

debugging sessions, so it’s handy for variables you check often. 

For quick checks without a window, hover your mouse over a variable in the code while 

paused. A tooltip pops up with its current value. If it’s an array like sc.Close, hover over 

it, and you can expand the tooltip to see values at different indices (though it’s limited 

to a small range). This is fast but less flexible than Locals or Watch. 

If your study uses Sierra Chart’s SCStudyInterfaceRef sc structure, you can dig into its 

members—like sc.Close, sc.Open, or sc.ArraySize. In the Locals window, expand the sc 

object by clicking the little arrow next to it. You’ll see all its fields, though some (like 

arrays) might need a Watch expression to inspect specific elements (e.g., sc.Close[0]). 

One catch: Sierra Chart runs studies in a single-threaded context tied to chart updates, 

so variable values only change when the study recalculates. If values aren’t updating, 



ensure your breakpoint’s in an active code path and the chart’s triggering the study. 

Also, if a variable shows gibberish, your DLL might be out of sync—rebuild it in debug 

mode ("Build with Visual C++ - Debug") and reload it in Sierra Chart. 

That’s it—Locals for an automatic overview, Watch for custom tracking, and tooltips for 

quick peeks. Which variables are you trying to monitor? I can tailor this more if you’ve 

got specifics in mind. 

 

 


