Home >> (Table of Contents) Advanced Custom Study/System Interface and Language (ACSIL) >>
ACSIL Programming Concepts

ACSIL Programming Concepts

¢ Introduction
¢ Unique Study Instance Identifiers
o Global Variables
e System Studies
o Working with SCString, Text Strings and Setting ACSIL Structure Member Name Strings
o SCString Methods
o SCString Examples
o Dynamic Graph Names
o Using or Referencing Study/Indicator Data in an ACSIL Function
o Referencing Data from a Sheet within a Spreadsheet
o Direct Programmatic Interaction with Spreadsheet Sheets
e Making Function Calls to External DLLs
o Passing ACSIL Interface Members Structure To Secondary Function
e Dynamic Memory Allocations Within Study Instance
o Alternative Method: Getting and Setting Persistent Data
o Allocating Memory for Classes
o Study and Related Functions for Requesting Remote Data for Price Levels
e One Time Calculations That Do Not Run During Study Updating
e One Time Processing per Bar in the Chart
e Accessing Milliseconds
e Custom Subgraph Coloring
e Limiting Study Access to Particular Chartbook and Symbol
e Finding Chart Bar Data Array Index for Start of Day
e Custom Free Form Drawing into Chart Window Using GDI
e Scale Related ACSIL Variables
e Accessing Volume at Price Data Per Bar
o Not Performing Calculation/Processing during Historical Data Downloading or Full
Recalculation
o Not Allowing Changes to Study Subgraph Settings
e Converting Date-Time in One Time Zone to The User Set Time Zone
¢ Skipping Bars/Columns with a Subgraph Draw Style
o Detecting New Bars Added to Chart
o Performing Action When Certain Time is Encountered in Most Recent Chart Bar
e Accessing Current Symbol Data for Other Symbols
e ACSIL Chart Drawings and Hiding a Study
o Getting Index of Start of Trading Day in Intraday Chart
o Accessing Data from Another Chart at Second to Last Index
e Displaying Custom Values in the Market Data Columns on the Chart / Trade DOM
e Determining New Bars When Chart is Updated
o Use of Dialog Windows in Advanced Custom Studies

file:///home/c/trading/SierraChartDocumentation/Descarga/index.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FContents.php.html#AdvancedCustomStudySystemInterfaceandLanguage
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#Introduction
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#UniqueStudyInstanceIdentifiers
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#GlobalVariables
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#SystemsAndAlerts
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#WorkingWithTextStrings
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#SCStringMemberFunctions
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#SCStringExamples
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DynamicGraphNames
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#UsingStudyData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#ReferencingDataFromSpreadsheet
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DirectProgrammaticInteractionWithSpreadsheetSheets
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DLLCalling
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#PassingACSILMembers
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DynamicMemoryAllocations
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#GettingAndSettingPersistentData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#AllocatingMemoryForClasses
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#PriceLevelsSample
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#OneTimeCalculations
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#OneTimeProcessingperBar
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#AccessingMilliseconds
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#CustomSubgraphColoring
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#LimitingStudyAccess
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#FindingStartOfDayIndex
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#CustomFreeFormDrawing
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#ACSILScaleVariables
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#AccessingVolumePriceDataPerBar
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#NotPerformingCalcDuringDataDownloadOrFullRecalc
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#NotAllowingStudySubgraphSettingsChanges
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#ConvertingBetweenTimeZones
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#SkippingWithASubgraphDrawStyle
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DetectingNewBarsAddedToChart
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#ActionWhenCertainTimeIsEncounteredInMostRecentBar
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#AccessingCurrentSymbolDataForOtherSymbols
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#ACSILChartDrawingsAndHidingAStudy
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#GettingIndexOfStartOfTradingDay
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#AccessingDataFromAnotherChartAtSecondToLastIndex
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DisplayingCustomValuesInMarketDataColumnsOnTheChartTradeDOM
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DeterminingNewBarsWhenChartIsUpdated
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#UseOfDialogWindowsInAdvancedCustomStudies

o Filling an Area Between Two Price Levels

e Debug Logging

¢ Uniquely Identifying an Instance of a Study

e Determining if Last Chart Bar is Closed

e Drawing Study in Two Different Chart Regions

o Combining Intraday Chart File Records into Original Summary Trade
e Programmatically Accessing Historical and Current Market Depth Data
o Study Initialization/Unitialization

o Floating Point Value Error

e ACSIL File Functions

o Keyboard Interaction with ACSIL Studies

Introduction

This page documents various programming concepts for ACSIL (Advanced Custom Study Interface and
Language).

Unique Study Instance Identifiers

Each study has a unique instance identifier. Refer to the image below. Many ACSIL Functions require
this identifier.

This identifier can be accessed through ACSIL with the sc.StudyGraphinstancelD variable. This identifier
is for the instance of the study that is accessing this value directly.

Chart Studies for: ESZ17 [M] 3 Min #54 Ed

Studies Available: Studies to Graph:
—

Moving Average - Linear Regression
Moving Average - Rolling Hi

Moving Average - Simple

Moving Average - Simple Skip Zeros . Move Down
Moving Average - Smoothed SeliiliEs
Moving Average - Triangular

Moving Average - Triple Exp

Moving Average - Volume Weighted

Moving Average - Weighted

Moving Average - Welles Wilders [~ Hide
Moving Average - Zero Lag Exponential
Moving Average Crossover

Moving Average Difference Duplicate
Moving Average Envelope
Moving Averages

Moving Linear Regression Remove
Moving Median hd

Move Up

Settings

| Save Studies As Study Collection
Name: Save Single

Show Study Description

Add Custom Study | Custom Study Help | I ;I Save All

0K | anee | Apply | Help | ™ Prompt to Remove Existing Studies Delete

The proper way to obtain this unique study instance identifier for a particular study, from another study is
through the sc.Input[].SetStudyID() and sc.lnput[].GetStudyID() Input functions or other Input functions
which create a study Input and allow getting of a study identifier. sc.Input[].SetStudylD() creates a
study Input with a list of studies on a chart and allow selecting one of them.

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#FillingAnAreaBetweenTwoPriceLevels
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DebugLogging
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#UniquelyIdentifyingAnInstanceOfAStudy
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DeterminingIfLastChartBarIsClosed
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DrawingStudyInTwoDifferentChartRegions
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#CombiningIntradayChartFileRecordsIntoOriginalSummaryTrade
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#ProgrammaticallyAccessingHistoricalAndCurrentMarketDepthData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#StudyInitializationUnitialization
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#FloatingPointValueError
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#ACSILFileFunctions
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#KeyboardInteractionWithACSILStudies
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FAdvancedCustomStudyInterfaceAndLanguage.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scStudyGraphInstanceID
file:///home/c/trading/SierraChartDocumentation/Descarga/images/StudyUniqueIdentifier.png
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scInputs.html#scInputSetStudyID
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scInputs.html#scInputGetStudyID

Also refer to sc.Ilnput[].SetChartStudyValues(), sc.lnput[].GetChartNumber() and sc.Input[].GetStudyID()

Input functions.

Global Variables

In C++ it is possible to define global variables which are accessible from any of the study functions in
your source code cpp file.

Global variables should not be confused with the Persistent Variable Functions which can be used to get
and set persistent variables for an individual study or other studies or studies on other charts.

There are generally 2 reasons why global variables would be used. 1. To share data between multiple
study functions. 2. To maintain data between calls to your study function.

It is essential to understand, that when a DLL is released like when it is built, or when using
Analysis >> Build Custom Studies DLL >> Build >> Release All DLLs and Deny Load , then what
you will find is that the global variables get reset.

Global variables need to be at the top of your source code file and outside of your study function. Refer
to the code example below.

Keep in mind that when a variable is global, there is only a single instance of it per DLL file. Therefore,
multiple instances of a particular study or multiple study functions, are going to be sharing the very same
instance of a global variable in the DLL it is defined within.

If you require basic variable types which are specific to each individual study instance, then you can
store persistent data by using the functions to get and set persistent data.

If you require nonbasic variable types which are specific to each individual study instance and remain
persistent between calls to a study function, then refer to Dynamic Memory Allocations Within Study
Instance.

Code Example

#include "SierraChart.h"
SCDLLName("StudiesFileName")

/[This is a global integer variable
int g_GloballntegerVariable;

SCSFExport scsf_StudyFunction(SCStudylInterfaceRef sc)

{
if (sc.SetDefaults)

{

}
}

System Studies

You are able to create, using the Advanced Custom Study Interface and Language, a System study.

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scInputs.html#scInputSetChartStudyValues
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scInputs.html#scInputGetChartNumber
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scInputs.html#scInputGetStudyID
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetPersistentInt
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetPersistentInt
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DynamicMemoryAllocations

A System study is one in which gives you graphical, text and/or audible indication of buy and sell
signals. This differs from an Automated Trading study which can also submit simulated or live orders.

The custom study interface is the same whether you create an indicator type Study or a System study.
In the case of a Study you will put your formula results into a sc.Subgraph[].Data array or arrays that are
graphed on the chart.

In the case of a System study you will fill the sc.Subgraph[].Data arrays with values indicating where
you want to buy or sell at and use these together with the appropriate sc.Subgraph[].DrawStyle to
indicate buy and sell conditions. For example, in the case of a System, you could set the
sc.Subgraph[].Data array element for the bar you want to give a buy signal at, to the price at which you
will buy. And set the sc.Subgraph[].DrawStyle to DRAWSTYLE_ARROW_UP. If your study is
displayed in Chart Region 1 (sc.GraphRegion = 0;), then the Up Arrow will be shown at the price level
you set the corresponding sc.Subgraph[].Data array element to.

If you require an audible or text indication of a buy or sell condition, then specify an Alert Condition
Formula with your custom system study. For more information, refer to Alerts and Scanning. Or, you can
add an alert message and play a sound directly from the study function using sc.SetAlert.

An example study function that acts as a System can be found in Systems.cpp inside the
/ACS_Source folder inside of the folder that Sierra Chart is installed to.

Working with SCString, Text Strings and Setting ACSIL
Structure Member Name Strings

Some members of the Advanced Custom Study Interface (sc structure passed to your study function)
use strings (a series of text characters). In most cases these are implemented as an SCString type. For
functions that receive a text string, these may just require a const character pointer (*) only or they may
use an SCString type for the text string parameter.

To set or modify these SCStrings or names which use an SCString, to build your own formatted string, to
compare strings, or to directly access the contents of an SCString when you need to access the const
character pointer (*), refer to the information below.

There is no need to have an understanding of the internal implementation details of the SCString class.

SCString Methods

SCString::Clear()

Type: Function
void Clear();

The Clear() function clears the data of an SCString object.

SCString::Format()

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILTrading.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphDrawStyle
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FStudyChartAlertsAndScanning.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scSetAlert

Type: Function
SCString& Format(const char* String, ...);

The Format() function overwrites the contents of the SCString object according to the given
parameters. This function works the same as the C++ Standard Library printf() function.

SCString::AppendFormat()

Type: Function
SCString& AppendFormat(const char* String, ...);

The AppendFormat() function appends the given parameters to the end of the SCString
object. This function works the same as the C++ Standard Library printf() function.

SCString::Compare()

Type: Function
int Compare(const char* StringToCompare, int NumChars = 0) const;

The Compare function makes a comparison between the SCString object and
StringToCompare and returns 0 if they are the same. An optional NumChars can be supplied
which will compare only the first NumChars between the strings, otherwise the entire string is
compared.

SCString::CompareNoCase()

Type: Function
int CompareNoCase(const char* StringToCompare, int NumChars = 0) const;
int CompareNoCase(const SCString& StringToCompare, int NumChars = 0) const;

The CompareNoCase() function works the same as the Compare() function, except that
character case is ignored in the comparison.

SCString::IsModified()

Type: Function
int IsModified() const;

The IsModified() function returns 1 if the SCString object has been modified or 0 if it has not
been modified.

SCString::IsEmpty()

Type: Function
int ISEmpty() const;

The IsEmpty() function returns a value of 1 if the SCString object is an empty string,
otherwise it returns a value of 0.

SCString::GetChars()

Type: Function
const char® GetChars() const;

The GetChars() function returns the string contained in the SCString object.

SCString::GetLength()

Type: Function
int GetLength() const;

The GetLength() function returns the number of characters that make up the SCString object.

SCString::IndexOf()

Type: Function
int IndexOf(char Delimiter, int Startindex = 0) const;

The IndexOf() function returns the position of the first occurrence of the Delimeter character
within the SCString object. The optional Startindex defines the starting location of the search
in terms of position within the SCString object starting at 0.

SCString::GetSubString()

Type: Function
SCString GetSubString(int SubstringLength, int Startindex = 0) const;

The GetSubString() function returns the substring of the SCString object that starts at the
Startindex and is SubStringLength number of characters long.

SCString::ParselLines()

Type: Function

void ParseLines(std::vector<SCString> &Lines);

The ParselLines function parses the SCSTring object looking for \n (newline) characters and
placing each string prefacing the \n into the Lines vector.

SCString::ParseLineltemsAsFloats()

Type: Function
void ParseLineltemsAsFloats(std::vector<float> &FloatValues);

The ParseLineltemsAsFloats() function parses the SCString object looking for \n (newline)
characters and placing each floating point value prefacing the \n into the FloatValues vector.

SCString::Tokenize()

Type: Function
int Tokenize(const char* Delim, std::vector<char*>& Tokens);

The Tokenize() function parses the SCString object looking for the Delim character and
placing each string prefacing the Delim into the Tokens vector.

SCString::Append()

Type: Function

SCString& Append(const SCString& Rhs);

The Append() function appends the contents of the Rhs string to the end of the SCString
object.

SCString::Left()

Type: Function
SCString Left(int Count) const;

The Left() function returns the substring from the SCString object that is the number of
characters defined by Count starting from the left side (beginning) of the SCString object
when Count is positive.

If Count is negative, then the substring starts at the left side (beginning) of the SCString
object, but has Count number of characters removed from the right side (end) of the SCString
object. If Count is negative and would result in the return of no data, then a NULL string is
returned.

SCString::Right()

Type: Function
SCString Right(int Count) const;

The Right() function returns the substring from the SCString object that is the number of
characters defined by Count starting from the right side (end) of the SCString object when
Count is positive. If Count is negative, then the substring starts at the right side (end) of the
SCString object, but has Count number of characters removed from the left side (beginning)
of the SCString object. If Count is negative and would result in the return of no data, then a
NULL string is returned.

SCString::operator ==

Type: Operator

The == operator performs a comparison between the SCString object on the left-hand side
and another SCString object or a Character String on the right-hand side. Returns True if the
strings are the same, otherwise returns False.

SCString::operator !=

Type: Operator

The = operator performs a comparison between the SCString object on the left-hand side
and another SCString object or a Character String on the right-hand side. Returns True if the
strings are not the same, otherwise returns False.

SCString::operator <

Type: Operator
<

The < operator performs a comparison between the SCString object on the left-hand side and
another SCString object or a Character String on the right-hand side. Returns True if the first
character that does not match is a lower value in the left-hand side than in the right-hand side,
otherwise returns False.

SCString::operator =

Type: Operator

The = operator replaces the contents of the SCString on the left-hand side with the SCSTring
or Character string on the right-hand side. This also sets the SCString as having been
modified (m_IsModified is set to a value of 1).

SCString::operator +=

Type: Operator
+=

The += operator appends the contents of the right-hand side to the SCString on the left-hand
side.

SCString Examples

Setting a SCString Name To A Constant String

Code Example

sc.GraphName = "My Study Graph";

Creating Strings that Consist of Numbers and Text

You are able to build text strings that contain numbers and other strings by using the Format()
and AppendFormat() member functions of the SCString class.

The Format() function assigns the formatted string to the SCString object, overwriting any
existing string contents. The AppendFormat() function adds the formatted string to the end of
any existing string contents currently in the SCString object.

The parameters of the Format() and AppendFormat() functions work exactly like the C++
standard library printf() function. For reference on the printf() function, refer to the the printf
reference.

Date Text String Example

This creates a text string with a date without any spaces.

SCString DateText;

int Year, Month, Day;
sc.BaseDateTimeln[sc.Index].GetDateYMD(Year,Month,Day);
DateText.Format("%d%02d%02d", Year,Month,Day);

Formatting Value to Chart Value Format

http://www.cplusplus.com/reference/cstdio/printf/

This creates a text string with the last trade price formatted according to the chart
Value Format. This does not use SCString::Formaty().

SCString FormattedValue;
sc.FormatGraphValue(sc.BaseData[SC_CLOSE][sc.Index], sc.ValueFormat);

sc.GraphName String Code Example

sc.GraphName will be set to the string created by the Format function.

int ExampleNumber = 5;

sc.GraphName.Format("Example %d", ExampleNumber);

SCString TestString;
float Value = 4.5;
TestString.Format("%s %.2f", "Value is:", Value);

SCString within SCString Code Example

You will notice in the example below that we use the GetChars() function on the
SCString to be able to access the internal C++ character pointer which is necessary
when using this class with the SCString Format() and AppendFormat() functions.

If we do not do this, it can lead to what is known as a CPU exception that you will see
displayed in the Sierra Chart Message Log and additionally you will not get a properly
formatted string.

SCString BarLabelText;

BarLabelText.Format("HL %s (%s)", ReversalPrice.GetChars(), LengthStr.GetChars());

Building a Character String for the sc.AddMessageToLog() or
sc.AddAlertLine() Functions

If you want to add messages to the log using the sc.AddMessageTolog() or
sc.AddAlertLine() functions, and have the messages contain variables, use a
SCString and the Format() function.

int MyInt = 50;

float MyFloat = 2.5f;

SCString Buffer;

Buffer.Format("My integer is %d. My float is: %f", MyInt, MyFloat);

sc.AddMessageTolLog(Buffer,0);

10

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scAddMessageToLog
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scAddAlertLine

Using a Formated String With The Text Tool

If you want to use the sc.UseTool function to display text that contains variables as text, use
the Format() and AppendFormat() member functions.

The Format() function assigns the formatted string to the SCString object, overwriting any
existing string contents, and the AppendFormat() function adds the formatted string to the
end of any existing string contents currently in the SCString object.

The parameters of the Format() and AppendFormat() functions work exactly like the C++
standard library printf() function. For reference on the printf() function, refer to this page.

Code Example

s_UseTool Tool;
Tool.Text.Format("High Value: %.3f",sc.BaseDataln[SC_HIGH][123]);

How To Compare Strings

You can compare a SCString to another string using the SCString CompareNoCase(const
char* String, int NumChars) or SCString CompareNoCase(SCString String, int
NumChars) functions.

These functions compare String to the string in the SCString these functions are called from,
using a case-insensitive comparison up to the first NumChars characters of the two strings.

If NumChars is left out, then the function compares all the characters of the two strings.

The function returns 0 if both strings are equal up to the given length, an integer < 0 if String
is lexically less than the string in SCString, and an integer > 0 if String is lexically greater
than the string in SCString.

Code Example

int Result;
Result = sc.Symbol.CompareNoCase("ABC");

SCString SymbolToCompare("ABC");
Result = sc.Symbol.CompareNoCase(SymbolToCompare);

Directly Accessing a SCString

You can use the GetChars function to directly access a SCString. This function returns a
pointer to a C++ char type.

Code Example

11

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILDrawingTools.html
http://www.cplusplus.com/reference/cstdio/printf/

const char* p_Symbol;
p_Symbol = sc.Symbol.GetChars();

Assigning to C++ string Code Example

std::string SymbolCopy;
SymbolCopy = sc.Symbol.GetChars();

SCString += operator (Text String Concatenation)

You can use the SCString += operator to concatenate multiple text strings into a larger text
string. Refer to the code example below.

Code Example

SCString ExampleText;
Text = "Dog";
Text += "and Lion";

SCString::GetLength()

To get the length of a text string contained within a SCString object, call GetLength function
on it. Refer to the example below.

Code Example

SCString TextString;
TextString = "Hello";
int Length = TextString.GetLength(); / will be set to 5

SCString::GetSubString()

To get a text string within an existing SCString, use the GetSubString(int SubstringLength,
int Startindex) function.

This function returns the string of the length specified by the SubstringLength parameter
starting at the Startindex parameter. If SubstringLength is longer than the number of
characters available beginning with Startindex, then it is reduced as is required.

If Startindex is equal to or beyond the length of the SCString, then an empty string is
returned.

12

The returned SCString is a copy of the substring within the SCString.

Code Example

SCString TextString = "Hello, this is a test.";
SCString PartialTextString = TextString.GetSubString(5, 0); // This will return "Hello"

Functions that use Constant Character Pointer or
SCString Parameters

To pass a text string parameter to a function that uses a constant character pointer or a
SCString, refer to the examples below.

Code Example

s_SCBasicSymbolData BasicSymbolData;
sc.GetBasicSymbolData("ABCD", BasicSymbolData, true);//function uses constant character pointe

SCString Symbol;
sc.GetBasicSymbolData(Symbol.GetChars(), BasicSymbolData, true);/function uses constant char

SCString MessageText;
MessageText = "Hello. This is a test.";
sc.AddAlertLineWithDateTime(MessageText.GetChars(), 1, sc.BaseDateTimeln[sc.Index]);//functic

void sc.AddMessageTolLog(MessageText, 1);/function supports both SCString and constant chara

std::string MessageTexi2;
MessageText2 = "Hello. This is a test.";
void sc.AddMessageTolLog(MessageText2.c_str(), 1);//function supports both SCString and consta

1] | 2

Dynamic Graph Names

Suppose you want to change the name of your study or the name of a study Subgraph in your study to
match an Input value. Setting the name inside of the code block for setting the study defaults will not
work because the code inside of that code block only gets executed once.

For a dynamic name, you will need to add some code outside of the code block for setting the study
defaults. Look at the example below to see how this is done.

Code Example

13

SCSFExport scsf_DynamicNameExample(SCStudylInterfaceRef sc)
{

// Set configuration variables
if (sc.SetDefaults)

sc.Subgraph[0].Name = "Subgraph";

sc.Input[0].Name = "Value";
sc.Input[0].SetFloat(1.5f);

return;

}

/I Set the subgraph name to include the Value input

// This must be outside the above if (sc.SetDefaults) code

// block so that it gets executed every time

sc.Subgraph[0].Name.Format("Value %f Subgraph", sc.Input[0].GetFloat());

sc.GraphName.Format("%s - Close = %f",sc.Symbol.GetChars(),sc.BaseDataln[SC_LAST][sc.ArraySize-1]);

// Do data processing

il L

Using or Referencing Study/Indicator Data in an ACSIL
Function

In your custom study function you may need to work with the results of other studies/indicators, like a
Moving Average or some other study. There are several methods to accomplish this.

o Use one of the Intermediate Study Calculation Functions like sc.SimpleMovAvg. Refer
to ACSIL Interface Members - Functions page for complete documentation for all of the
available functions. This is going to be the cleanest and most organized way to do it as
long as there is an Intermediate Study Calculation Function available for the particular
study or indicator that you want calculated and to use the data of.

The results of the study calculations do not have to be outputted to study Subgraph
arrays which are graphed on the chart. Or if they are, those Subgraphs can have their
Draw Style set to Ighore so they are not visible.

¢ Add the study to the chart and then get the Study Subgraph data by using the
sc.GetStudyArrayUsinglD function. Use this method when there is no Intermediate
Study Calculation Function available for the particular study or indicator that you want to
calculate and use the data of. This is going to be the case when you are using studies
developed by outside developers or are using Advanced Custom Studies that do not
have an Intermediate Study Calculation Function.

Once the study is added to the chart it can be hidden by enabling the Hide Study
setting in the Study Settings window for the study.

You may also want to use this method, if the study that you want to calculate and get

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetStudyArrayUsingID

the data of, is already on the chart.

o Somewhat related to this is the ability to access the additional arrays,
sc.Subgraph(].Arrays[][], from other studies on the chart. This can be done with the
sc.GetStudyExtraArrayFromChartUsinglD() function.

e To access a persistent variable set in one study, from another study. The functions for
setting persistent variables are sc.GetPersistent™.

The functions for getting the persistent variables in another study are
scGetPersistent*FromChartStudy.

o ltis also supported to reference studies like a Color Bar Based on Alert Condition
study. This study colors bars. Where it colors bars, the Subgraph element at the bar
index that is colored, is set to a nonzero value (usually 1.0). It is supported to get the
Subgraph array from that study by using the sc.GetStudyArrayUsingID function as
explained above.

e To get study arrays on other charts in the Chartbook, refer to Referencing Data from
Other Time Frames By Direct Referencing of the Other Timeframe.

Referencing Data from a Sheet within a Spreadsheet

When using the Spreadsheet Study on a chart, the main price graph data and study data is outputted to
a Sheet within a Spreadsheet window. There are also up to 60 Formula Columns on the Sheet which can
contain formulas and display the results those formulas.

An Advanced Custom Study is able to access the formula results from those 60 formula columns at any
row.

Each Sheet Formula Column corresponds to a Study Subgraph in the Spreadsheet Study. You are
able to access the data from the Spreadsheet Study by using the Using Study/Indicator Data in an
ACSIL Function methods.

The Spreadsheet Study is just like any other study on the chart and can have its data accessed by an
Advanced Custom Study. In the Spreadsheet Sheet used by the Spreadsheet Study, Column K is
accessible with the sc.Subgraph[0].Data Subgraph array, Column M is accessible with the
sc.Subgraph[1].Data Subgraph array, and so on.

However, there is a special consideration involving Calculation Precedence.

It is necessary to set sc.CalculationPrecedence = VERY_LOW_PREC_LEVEL in the sc.SetDefaults
code block in the study function referencing the Spreadsheet Study. It is also necessary to place the
instance of the study referencing the Spreadsheet Study at the end of the list of studies in the
Analysis >> Studies >> Studies to Graph list.

Direct Programmatic Interaction with Spreadsheet Sheets

It is supported to directly get and set cell data from/to Sierra Chart Spreadsheets Sheets using ACSIL.
Refer to the following functions.

15

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetStudyExtraArrayFromChartUsingID
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetPersistentInt
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetPersistentIntFromChartStudy
https://www.sierrachart.com/index.php?page=doc/StudiesReference.php&ID=245#Color_Bar_Based_on_Alert_Condition
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetStudyArrayUsingID
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILRefOtherTimeFrames.php.html#DirectReferencing
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FOverviewOfSpreadsheetStudies.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#UsingStudyData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartStudies.html#StudyCalculationPrecedence

¢ sc.GetSheetCellAsDouble()

o sc.SetSheetCellAsDouble()

o sc.GetSheetCellAsString()

o sc.SetSheetCellAsString()

o sc.GetSpreadsheetSheetHandleByName()

For a code example, refer to the /ACS_Source/ACSILSpreadsheetinteraction.cpp source code file in
the Sierra Chart installation folder.

Making Function Calls to External DLLs

You are able to call DLL functions in an external DLL file from an Advanced Custom study. The
functions you will use to accomplish this are the Windows functions LoadLibrary and GetProcAddress.
This is discussed on the Using Run-Time Dynamic Linking page on the MSDN website.

The recommended method with handling the loading of the library is to define a global HMODULE
variable at the top of your source code file outside of a study function. If it defined is outside of a study
function, it will be global. HMODULE is the type returned by LoadLibrary().

In your study function, if this variable is 0 or NULL, then make a call to LoadLibrary() and then set the
HMODULE global variable with the handle. Otherwise, the library is already loaded and you can use the
global HMODULE variable when you call GetProcAddress(). There is no need to free the library
because that will be done when Sierra Chart is exited.

The DLL can be put either into the Sierra Chart main installation folder or into the Data subfolder
assuming that is set as the current Data Files Folder. In either of these cases, when calling LoadLibrary
there is no need to specify the path, only the file name.

Passing ACSIL Interface Members Structure To Secondary
Function

It is possible to call a secondary function from your primary study function and have it be able to access
all of the ACSIL sc interface members. To do this you just need to pass the sc object by reference as
demonstrated in the code below.

For additional information, refer to C++ Functions.

Code Example

16

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetSheetCellAsDouble
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scSetSheetCellAsDouble
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetSheetCellAsString
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scSetSheetCellAsString
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetSpreadsheetSheetHandleByName
https://msdn.microsoft.com/en-us/library/ms686944(VS.85).aspx
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FGeneralSettings.html#DataFilesFolder
https://www.sierrachart.com/index.php?page=doc/cpp_Functions.php

/* */
void PassingSCStrutureExampleFunction(SCStudyInterfaceRef sc)

/[The "sc" structure can be used anywhere within this function.

}

/*
"An example of calling a function that receives the Sierra Chart ACSIL structure (sc)."
*/

SCSFExport scsf_PassingSCStrutureExample(SCStudyInterfaceRef sc)

if (sc.SetDefaults)

// Set the configuration and defaults

sc.GraphName = "Passing sc Structure Example Function";

sc.StudyDescription = "An example of calling a function that receives the Sierra Chart ACSIL structure (sc).";

return;

}

// Do data processing
/I The definition of the function called below must be above this function.a

PassingSCStrutureExampleFunction(sc);

}

il | o

Dynamic Memory Allocations Within Study Instance

Within an instance of an Advanced Custom Study, it is possible to dynamically allocate memory which
remains persistent between study function calls. The code example below demonstrates this.

The code allocates the memory when it sees that the allocation does not exist and releases the memory
when the study instance is removed from the chart or the Chartbook is closed.

When Sierra Chart is browsing through all of the studies in the DLL file in order to provide a listing of
them, it needs to call the study function with sc.SetDefaults set to 1 but the study function should not be
doing any data processing or memory allocations because Sierra Chart only needs to get the
sc.GraphName. For this reason, the allocation of memory must never be done in the sc.SetDefaults
code block.

Code Example

17

SCSFExport scsf_DynamicMemoryAllocationExample(SCStudyInterfaceRef sc)
{if (sc.SetDefaults)

// Set the configuration and defaults

sc.GraphName = "Dynamic Memory Allocation Example";

sc.AutoLoop = 1;

return;

}

// Do data processing
double * p_DoubleArray = (double*)sc.GetPersistentPointer(1);

if(sc.LastCallToFunction)
{
if(p_DoubleArray != NULL)

sc.FreeMemory(p_DoubleArray);
sc.SetPersistentPointer(1, NULL);

}

return;

}
if(p_DoubleArray == NULL)

//Allocate an array of 1024 doubles.
p_DoubleArray = (double *) sc.AllocateMemory(1024 * sizeof(double));

if(p_DoubleArray != NULL)
sc.SetPersistentPointer(1, p_DoubleArray);
else

return;

}

//assign value to one of the elements
p_DoubleArray[0] = 100;

return;

}

Alternative Method: Getting and Setting Persistent Data

As an alternative to dynamic memory allocations, there is also the ability to store persistent data
of various simple types by using the functions to get and set persistent data.

Allocating Memory for Classes

When allocating memory for class types which use constructors and destructors, it is necessary
to use the C++ functions new and delete instead of the sc.AllocateMemory and
sc.FreeMemory functions. Refer to the code example below.

When using new and delete in the study function it is necessary to understand that when a DLL
is rebuilt, or when using
Analysis >> Build Custom Studies DLL >> Build >> Release All DLLs and Deny Load, an

18

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetPersistentInt

exception will later occur when using delete due to the memory address not being valid any
longer.

Therefore, first before releasing the DLL, the memory must get released by the study function and
the pointers set to null before the DLL is unloaded. Otherwise, there are going to be exceptions if
that memory is used again because the operating system will have released the memory when
the DLL is unloaded.

For an example of a dynamically allocated STL vector, refer to the function
TradingLevelsStudyCore in the /ACS_Source/RequestValuesFromServerAndDraw.cpp file
in the Sierra Chart installation folder.

Code Example

if (sc.SetDefaults)
{

// Set the configuration and defaults
sc.GraphName = "Dynamic Memory Allocation Example (new/delete)";
sc.AutoLoop = 1;

return;

}

//Example class
class ClassA

{
public:
int IntegerVariable;

b

/I Do data processing
ClassA * p_ClassA = (ClassA *)sc.GetPersistentPointer(1);

if(sc.LastCallToFunction)

if(p_ClassA = NULL)

{
delete p_ClassA;

sc.SetPersistentPointer(1, NULL);
}

return;

}

if(p_ClassA == NULL)
{

//Allocate one instance of the class
p_ClassA = (ClassA *) new ClassA;

if(p_ClassA != NULL)
sc.SetPersistentPointer(1, p_ClassA);
else
return;
}

int IntegerVariable = p_ClassA->IntegerVariable;

return;

19

http://www.cplusplus.com/reference/vector/vector/

Study and Related Functions for Requesting Remote Data for
Price Levels

For a working code example to request price levels from a remote server and display them on a chart,
refer to the scsf_TradingLevelsStudy() function in the
/ACS_Source/RequestValuesFromServerAndDraw.cpp file. This is only available with version 1227
and higher.

The study function is designed to work with data on the server in the following format:

2014/01/01,1,2,3,4,5,6,7,8
2014/01/02,1,2,3,4,5,6,7,8

One Time Calculations That Do Not Run During Study
Updating

If there are calculations or other program statements you want to run only once in a study function and
not every time the study is updated, then check sc.Index == 0. Refer to code below. With this check, any
code within the "if" block will only run when the study is fully recalculated. This code applies when using

Automatic Looping only.

A full recalculation occurs under various conditions, like when a study is added to the chart, or when a
Chartbook is opened. During normal study updating, the code will not run unless the chart only has 1
bar/column.

if(sc.Index == 0)

//Code to run only on study full recalculation

}

One Time Processing per Bar in the Chart

//This demonstrates a simple method to prevent processing on a bar more than once.

//All bars in the chart other than the last one are only going to have processing for them in a study function, done only or
//However, the last bar in the chart could be multiple times during real-time updating and during a chart replay.

int &LastBarIndexProcessed = sc.GetPersistentInt(1);

if (sc.Index == 0)
LastBarIndexProcessed = -1;

if(sc.Index == LastBarIndexProcessed)
return;

LastBarIndexProcessed = sc.Index;

] e

Accessing Milliseconds

20

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scIndex
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#AutomaticLoopingIterating

The internal value held within a SCDateTime variable may contain a millisecond value. For example,
when a chart is set to 1 tick per bar or when the chart bars are not based upon a fixed amount of time,
like when they are based upon a Number of Trades or Volume, the starting time of the bar may contain
milliseconds.

Therefore, the sc.BaseDateTimeln[] array Date-Time values can contain milliseconds.

Use the SCDateTime::GetMilliSecond() and SCDateTime::GetDateTimeYMDHMS_MS functions to
get the milliseconds.

Custom Subgraph Coloring

ACSIL supports custom coloring study Subgraphs at each chart column/bar. This is accomplished by
setting a custom RGB value through the sc.Subgraph[].DataColor|] array.

Generally it is a good idea to make the colors selectable through the Study Settings for the study. Each
study Subgraph supports 2 color settings. There is the default Primary color button and the optional
Secondary color button. To enable the Secondary color button, use sc.Subgraph[].SecondaryColorUsed.
These color buttons for each study Subgraph set the sc.Subgraph[].PrimaryColor and
sc.Subgraph[].SecondaryColor RGB values. These RGB color values can be directly used when setting
the sc.Subgraph[].DataColor[] array.

Limiting Study Access to Particular Chartbook and Symbol

A study function can be programmed to prevent it from being used on a Chartbook other than the one
specified. Or, from being used on a Symbol other than the one specified. Below are code examples of
how this can be accomplished.

/[This is an example to prevent a study from being used on a Chartbook other than the one specified
if(sc.ChartbookName != "Chartbook50")
return;

/[This is an example to prevent a study from being used on a symbol other than the one specified

if(sc.Symbol |= "ABCD")
return;

Finding Chart Bar Data Array Index for Start of Day

The following code will determine the index into the sc.BaseData[][] and sc.Subgraph[].Data[] arrays
which is the start of the day based on the Session Times set for an Intraday chart, for the current bar
index being processed.

// Bar index of beginning of trading day for bar at current index. This depends upon auto looping being true.
SCDateTime DayStartDateTime =sc.GetTradingDayStartDate TimeOfBar(sc.BaseDateTimeln[sc.Index]);
int StartOfDayIndex= sc.GetContainingIndexForSCDateTime(sc.ChartNumber, DayStartDateTime);

21

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FSCDateTime.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDateTimeIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphDataColor
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphSecondaryColorUsed
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphPrimaryColor
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphSecondaryColor

Custom Free Form Drawing into Chart Window Using GDI
(Graphics Device Interface)

Through the Windows GDI, Graphics Device Interface, it is possible to draw freely into a chart window.

For a code example demonstrating how this is done, refer to the /ACS_Source/GDIExample.cpp file in
the folder where Sierra Chart is installed to on your system.

Windows GDI| documentation.

When using this feature, you need to define a drawing function which does the drawing using the
Windows GDI. This drawing function is called when Sierra Chart draws on the chart, the study which has
specified that drawing function. This will only occur after there has been a call to the main "scsf_" study
function.

The drawing function that you define has complete access to the ACSIL sc. structure. However, any
changes to the variable members of that structure will have no effect. The function also receives the
window handle and the GDI device context handle.

When Sierra Chart is set to use OpenGL and is using OpenGL, the GDI drawing function is not called in
this case since it is not compatible with OpenGL.

Scale Related ACSIL Variables

The scale for a study graph and also for the base graph in the chart can be controlled with various
ACSIL variables. They are listed below.

¢ sc.AutoScalePaddingPercentage
o sc.BaseGraphScaleConstRange
o sc.BaseGraphScalelncrement

o sc.BaseGraphScaleRangeType
¢ sc.ScaleConstRange

e sc.Scalelncrement

¢ sc.ScaleRangeBottom

e sc.ScaleRangeTo
e sc.ScaleRangeType

e sc.ScaleType
e sc.ScaleValueOffset

Accessing Volume at Price Data Per Bar

Studies like Numbers Bars and Volume by Price use the Volume at Price data available for each chart
bar. To programmatically access this data in your own studies, it is necessary to use the Advanced
Custom Study/System Interface and Language (ACSIL).

In the ACSIL study function, it is necessary to use the interface structure member

22

https://msdn.microsoft.com/en-nz/library/windows/desktop/dd145203%2528v=vs.85%2529.aspx
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scAutoScalePaddingPercentage
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseGraphScaleConstRange%20
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseGraphScaleIncrement
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseGraphScaleRangeType
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scScaleConstRange
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scScaleIncrement
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scScaleRangeBottom
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scScaleRangeTop
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scScaleRangeType
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scScaleType
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scScaleValueOffset
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FAdvancedCustomStudyInterfaceAndLanguage.php.html

sc.VolumeAtPriceForBars to access the volume at price data per bar.

Not Performing Calculation/Processing during Historical Data
Downloading or Full Recalculation

To not perform any processing or calculations in an ACSIL custom study, include the following line
before the code that does the processing or calculations. However, this needs to be after the
sc.SetDefaults code block.

if (sc.IsFullRecalculation || sc.DownloadingHistoricalData)
return;

For more information, refer to sc.IsFullRecalculation and sc.DownloadingHistoricalData.

Also refer to Detecting New Bars Added to Chart.

Not Allowing Changes to Study Subgraph Settings

To not allow any changes to Study Subgraph settings through the Subgraphs tab of the Study Settings
window for an ACSIL study, simply set those particular settings on the sc.Subgraph[] object outside of
and after the sc.SetDefaults() code block in the study function.

Not all of the sc.Subgraph[] default settings which are normally in the sc.SetDefaults() code block,
need to be outside of and after this code block. Only the ones you do not want to be changed by the user
interface.

Converting Date-Time in One Time Zone to The User Set Time
Zone

There are cases where an Advanced Custom Study may work with a particular Time in one time zone
and need to convert it to the Time Zone set by the user in their copy of Sierra Chart. It is necessary for
this Time to convert also have a Date so it is possible to apply the Daylight Savings time rules. So it is
possible to convert a complete SC DateTime value.

The ACSIL function to convert a Date-Time in one time zone to the Time Zone that the user has set in
their copy of Sierra Chart is sc.ConvertToSCTimeZong().

Skipping Bars/Columns with a Subgraph Draw Style

To draw a Study Subgraph where there are some bars/columns where there is no drawing of the
particular Draw Style the Study Subgraph uses, requires that a Draw Style be used which supports
interruption like one of the following:

o DRAWSTYLE_BAR
o DRAWSTYLE_POINT

23

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scVolumeAtPriceForBars
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scIsFullRecalculation
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scDownloadingHistoricalData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILProgrammingConcepts.html#DetectingNewBarsAddedToChart
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scConvertToSCTimeZone

« DRAWSTYLE_DASH

« DRAWSTYLE_SQUARE

« DRAWSTYLE_STAR

« DRAWSTYLE_PLUS

« DRAWSTYLE_ARROW_UP

« DRAWSTYLE_ARROW_DOWN

« DRAWSTYLE_ARROW_LEFT

« DRAWSTYLE_ARROW_RIGHT

« DRAWSTYLE_COLOR_BAR

« DRAWSTYLE_BOX_TOP

« DRAWSTYLE_BOX_BOTTOM

« DRAWSTYLE_COLOR_BAR_HOLLOW
« DRAWSTYLE_COLOR_BAR_CANDLE_FILL
« DRAWSTYLE_BAR_TOP

« DRAWSTYLE_BAR _BOTTOM

« DRAWSTYLE_LINE_SKIP_ZEROS

And it is necessary to set sc.Subgraph[].DrawZeros = 0 for the Subgraph. Where you do not want to
have the Draw Style drawn, simply set the sc.Subgraph[].Data[] element at that index to 0.

Refer to the code example below.

Code Example

FirstSubgraph.Name = "First Subgraph";
FirstSubgraph.DrawStyle = DRAWSTYLE_LINE_SKIP_ZEROS;
FirstSubgraph.DrawZeros = 0;

FirstSubgraph.PrimaryColor = RGB(0,255,0);

Detecting New Bars Added to Chart

Code Example

int& PriorArraySize = sc.GetPersistentint(1);
if (sc.Index == 0)

PriorArraySize = sc.ArraySize;

}

/I If there are new bars added
if (PriorArraySize < sc.ArraySize)

{

/I put processing here that is required for when new bars are added to the chart

}

PriorArraySize = sc.ArraySize;

Performina Action When Certain Time is Encountered in Most

24

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphDrawZeros

Recent Chart Bar

The below example code demonstrates performing an action when a certain time is encountered in the
most recent chart bar. It uses the sc.lsDateTimeContainedinBarindex function.

The complete example can be found in the scsf_ActionWhenTimeEncountered function in the
/ACS_Source/studies5.cpp file in the folder Sierra Chart is installed to.

Code Example

SCDateTime TimeToCheckFor;

/[The first step is to get the current date.
int CurrentDate = sc.BaseDateTimeln[sc.ArraySize - 1].GetDate();

//Apply the time. For this example we will use 12 PM
TimeToCheckFor.SetDate(CurrentDate);
TimeToCheckFor.SetTimeHMS(12, 0, 0);

// TimeToCheckFor is contained within the current bar.
if (sc.IsDateTimeContainedInBarIndex(TimeToCheckFor, sc.Index))

//perform the action here

}

Accessing Current Symbol Data for Other Symbols

To access current quote and real-time data for other symbols compared to the symbol of the chart a
study instance is applied to, then the following functions can be used for this. This data includes the data
that is displayed in Window >> Current Quote Window and market depth data. This includes the daily
open, high, low, last, volume, and current Bid and Ask values. And various other market data fields.

¢ sc.GetTimeAndSalesForSymbol()
o sc.GetSymbolDataValue(): This function also supports subscribing to real-time data for
the symbol. This is so you do not need to have charts open for each symbol.

These functions are not for historical data access. They are intended for accessing the current quote and
real-time data for other symbols. They allow for very efficient access to data in the case where you want
to access data for a very large number of symbols.

You may also want to use sc.UpdateAlways to cause your study function to be continuously called to
allow it to access the data at regular intervals.

If you want to use this capability to monitor the real-time data for a large number of symbols, then you
will need to be using a data feed which is capable of providing data for a large number of symbols
simultaneously. The Real-Time Exchange Data Feeds Available from Sierra Chart are capable of this,
although a customized quotation may be necessary if more than 500 symbols are needed.

For a quotation, contact Sierra Chart Support on the Support Board. Also, when tracking a large number
of symbols with the Sierra Chart Data Feeds we recommend using Low Bandwidth Mode.

25

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetTimeAndSalesForSymbol
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetSymbolDataValue
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scUpdateAlways
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FRealTimeDataFeedsAvailableFromSierraChart.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/SupportBoard.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FRealTimeDataFeedsAvailableFromSierraChart.php.html#LowBandwidthOption

ACSIL Chart Drawings and Hiding a Study

When a study is hidden through the Study Settings for the study, Chart Drawings added by the custom
study will still be visible.

If you do not want the Chart Drawings visible in this case, then it is necessary to check the value of the
sc.HideStudy variable and only draw the Chart Drawings if it is set to 0.

Code Example

if (!sc.HideStudy)

//Add Chart Drawings here
1

Getting Index of Start of Trading Day in Intraday Chart

The following code example demonstrates how to get the bar index in the chart the study function is
applied to, which corresponds to the start of the trading day in an Intraday chart. The start of the day is
based upon the Session Times.

Code Example

//Get index of start of trading day based upon Date-Time at current index. This code assumes automatic looping
SCDateTime StartDateTime = sc.GetTradingDayStartDate TimeOfBar(sc.BaseDateTimeln[sc.Index]);
int StartBarlndex = sc.GetContainingIndexForSCDateTime(sc.ChartNumber, StartDateTime);

il L

Accessing Data from Another Chart at Second to Last Index

The following code example demonstrates how to get the last/closed price array of the main price graph
from another chart and access the second to last element in that array. The second to last element in a
graph array can be considered the last completed bar.

For further information, refer to sc.GetChartArray.

Code Example

SCFloatArray LastPriceArray;
sc.GetChartArray(1, SC_LAST, LastPriceArray);
if (LastPriceArray.GetArraySize() >= 2)

/[This will get the second to last price value
float Value = LastPriceArray[LastPriceArray.GetArraySize() - 2];

Disblavina Custom Values in the Market Data Columns on the

26

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartStudies.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILDrawingTools.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scHideStudy
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FSessionTimes.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetChartArray

B i A~ T TTTTTTIT Tttt TTST TTTTETTTYTIT T/ TTYTYTT T T TTRTTtTTT TRt TR T

Chart / Trade DOM

The following functionality only works with version 1602 and higher.

It is supported through the use of study Subgraphs in ACSIL to display custom values in the market data
columns area of the Chart/Trade DOM. This method uses study Subgraphs, so it has a limit of 60 values
at a time.

The following are the basic steps to accomplish this:

w

. Through the user interface, select

Global Settings >> Customize Chart/Trade DOM Columns .
Add the Label Column.
In the ACSIL study Function, set sc.GraphRegion = 0; in the sc.Defaults code block.

. For every value you want to display in the Label Column on the Chart/Trade DOM, it is

necessary to use a separate study Subgraph. In the ACSIL study function, set the
sc.Subgraph[].DrawStyle for each of the Subgraphs that will display values, to
DRAWSTYLE_SUBGRAPH_NAME_AND_VALUE_LABELS_ONLY, in the
sc.Defaults code block.

. Set the sc.Subgraph[].LineLabel variable to the following constants combined with the

bitwise or operator as follows: LL_DISPLAY_VALUE |
LL_VALUE_ALIGN_DOM_LABELS COLUMN |
LL_DISPLAY_CUSTOM_VALUE_AT_Y, in the sc.Defaults code block.

. Fill in the sc.Subgraph[].Data[sc.ArraySize -1] array element to the value you want to

display.

. Set the sc.Subgraph[].Arrays[0][sc.ArraySize -1] extra array element to the vertical axis

value where you want the value set in the sc.Subgraph[].Data[] array, to be displayed at.

Determining New Bars When Chart is Updated

Code Example

/I This code relies on manual looping and assumes that on the chart update there

/l'is not more than one new bar added. If there is more than one bar, then it

// indicates that new bars have been added when BarHasClosedOnThisUpdate is true.
// Closed bar is at index sc.ArraySize - 2.

bool BarHasClosedOnThisUpdate = false;

if (sc.UpdateStartindex != 0 && sc.UpdateStartindex < sc.ArraySize - 1)
BarHasClosedOnThisUpdate = true;

Use of Dialog Windows in Advanced Custom Studies

A custom study creation of windows and dialog windows through the operating system API functions can

be done.

In the case of dialog boxes on the Windows operating system, refer to Dialog Boxes.

27

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphDrawStyle
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphLineLabel
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphArrays
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632588%2528v=vs.85%2529.aspx

Any programming help in this area is not within the scope of this documentation. It is up to you and your
abilities to do that type of development if you require. It is possible but outside the scope of any
documentation provided here.

An Advanced Custom Study within Sierra Chart, creating what is known as a "modal" dialog window
must never be done and is not supported. These types of windows require the user to press a button to
save the settings and close the dialog window before processing continues after the creation of this type
of window. This will cause serious malfunctioning in Sierra Chart when that dialog type window is
displayed from an Advanced Custom Study.

What will happen is that once that window is displayed, there will be a call back into the study function
over and over again until there is a stack overflow. Sierra Chart will then abnormally shutdown at some
point.

Filling an Area Between Two Price Levels

To fill in area on a chart between two price levels, first understand that this is done with two Subgraphs
using the Fill Top and Fill Bottom Draw Styles. There are also transparent versions of these draw
styles. For further details, refer to Filling the Area Between Two Study Subgraphs within Same Study

and sc.Subgraph[].DrawStyle.

To set the transparency level for the transparent Draw Styles, use sc.Transparencyl evel.

If you would like this fill area to extend beyond the last bar in the chart, then you would use this
Subgraph member sc.Subgraphl[].ExtendedArrayElementsToGraph for the two Subgraphs.

Debug Logging

This section provides code examples showing how to add logging to your custom study to log numeric
values and text strings in order to understand the functioning of your code during its execution.

Code Example

28

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartStudies.html#FillingArea
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphDrawStyle
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scTransparencyLevel
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scExtendedArrayElementsToGraph

/I Debug Logging examples:
// This is for efficiency so the logging occurs only on the most recent chart bar
if (sc.Index == sc.ArraySize - 1)

{
SCString DebugMessage;

// Log an integer value

int IntegerValue = 101;
DebugMessage.Format("IntegerValue=%d", IntegerValue);
sc.AddMessageTolLog(DebugMessage, 0);

/I Log a subgraph value
DebugMessage.Format("SubgraphValue=%f", sc.Subgraph[0].Data[sc.Index]);
sc.AddMessageTolLog(DebugMessage, 0);

/I Log a Date-Time value

SCString DateTimeString = sc.FormatDateTime(sc.BaseDateTimeln[sc.Index]);
DebugMessage.Format("DateTime=%s", DateTimeString.GetChars());
sc.AddMessageTolLog(DebugMessage, 0);

If you would like this fill area to extend beyond the last bar in the chart, then you would use this
Subgraph member sc.Subgraphl[].ExtendedArrayElementsToGraph for the two Subgraphs.

Uniquely Identifying an Instance of a Study

To be able to programmatically uniquely identify an instance of a study, requires using the following
ACSIL variables:

e sc.ChartNumber
e sc.ChartbookName
e sc.StudyGraphlnstancelD

Determining if Last Chart Bar is Closed

When trying to determine if the last chart bar is closed, it is not possible to use the function
sc.GetBarHasClosedStatus().

The first step is to determine the starting Date-time with the sc.BaseDateTimeln array of the last bar in
the chart.

You then have to determine what the time period of the chart bar is. To help with this, use the function
sc.GetBarPeriodParameters.

Using the bar period parameters, you can calculate the time period of the chart bar as an SCDateTime
value.

Add this time period of the chart bar to the starting Date-Time of the chart bar.

If the current Date-Time obtained from the sc.GetCurrentDateTime function is exceeding the Date-Time
calculated in the prior step, then the chart bar has closed.

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scExtendedArrayElementsToGraph
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scChartNumber
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scChartbookName
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scStudyGraphInstanceID
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetBarHasClosedStatus
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDateTimeIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetBarPeriodParameters
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FSCDateTime.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetCurrentDateTime

Drawing Study in Two Different Chart Regions

A study cannot draw itself in more than one Chart Region.

However, there is a technique which can be used to cause data from one study to be displayed in
another Chart Region from where it is located.

To do this, you need to use the Study Subgraph Reference study to reference a particular study
Subgraph that you want to display in another Chart Region. Set the Study Subgraph Reference study
to display in the Chart Region that you want.

Change the Draw Style of the Study Subgraph Reference study Subgraph to what you require.

The study Subgraph in the source study usually should not be drawn in that study and should have its
Draw Style set to Ignore. If the values of the source study Subgraph which is being referenced by the
Study Subgraph Reference study are out of range compared to the Chart Region it is displayed in,
then its Draw Style must be set to Ignore.

Combining Intraday Chart File Records into Original
Summary Trade

To programmatically perform the same function that the Combining Intraday Chart File Records into
Original Summary Trade Chart Setting performs, follow the instructions below.

It is first necessary to access the individual trades and that can be done with the sc.GetTimeAndSales
function or the sc.ReadIntradayFileRecordForBarindexAndSublndex function.

With either of these methods, it is then possible to determine with each trade, whether it was part of a
larger summary trade. If it is, then it would be identified as the first sub trade of an unbundled trade. Or
the last trade of an unbundled trade. Between these two identifiers, those trades are part of the larger
summary trade as well. So the summary trade begins with the trade identified as the first sub trade of
unbundled trade, and then ends with the trade identified as the last trade of an unbundled trade. By
combining the volumes of all of these trades together, you then have a summary trade at that price and
the total volume.

In the case of an Intraday file record, it is the Open field which indicates through a special value whether
it is the first trade or last trade of an unbundled trade or not. Refer to Intraday Record Open.

In the case of a Time and Sales record, it is the s_ TimeSales::UnbundledTradelndicator structure
member which indicates if a trade is the first or last trade of an unbundled trade or not. It can have one
of the following values: UNBUNDLED_TRADE_NONE = 0,
FIRST_SUB_TRADE_OF_UNBUNDLED TRADE =1, LAST_SUB_TRADE_OF_UNBUNDLED_TRADE
=2.

Programmatically Accessing Historical and Current Market
Depth Data

30

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scGraphRegion
https://www.sierrachart.com/index.php?page=doc/StudiesReference.php&ID=413&Name=Study_Subgraph_Reference
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartStudies.html#ChartRegion
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartStudies.html#DrawStyle
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartStudies.html#DrawStyle
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartSettings.html#CombineTradesIntoOriginalSummaryTrade
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetTimeAndSales
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scReadIntradayFileRecordForBarIndexAndSubIndex
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FIntradayDataFileFormat.html#s_IntradayRecord

Use the following functions to access the current market depth data. This also includes the current
market depth data during a chart replay.

s_sc.GetAskMarketDepthEntryAtLevel
s_sc.GetAskMarketDepthEntryAtLevelForSymbol (todo)
o s_sc.GetAskMarketDepthNumberOfLevels
s
s

sc.GetAskMarketDepthNumberOflL evelsForSymbol (todo)
sc.GetAskMarketDepthStackPullValueAtPrice

o s_sc.GetBasicSymbolDataWithDepthSupport
sc.GetBidMarketDepthEntryAtLevel
sc.GetBidMarketDepthEntryAtl evelForSymbol (todo)
sc.GetBidMarketDepthNumberOfLevels
sc.GetBidMarketDepthNumberOflLevelsForSymbol (todo)
sc.GetBidMarketDepthStackPullValueAtPrice
sc.GetMaximumMarketDepthlLevels
sc.MaintainHistoricalMarketDepthData
sc.UsesMarketDepthData

o Market Depth Data File Format

[]
» v »v ju v jn v |©»

To access historical market depth data in the chart, refer to ACSIL Interface Members - Historical Market
Depth Data (c ACSILDepthBars).

Chart Drawing Relative Positioning

The coordinate system of a chart is based upon Date-Times along the horizontal axis, and price graph or
study graph values on the vertical axis. So these are considered absolute type of coordinates since they
are referring to very specific points in the larger chart which is not visible.

Chart Drawings in ACSIL can use relative positioning which are relative to the bottom left of the chart.
The following are the maximum values. The minimum values are O.

const double CHART_DRAWING_MAX_HORIZONTAL_AXIS_RELATIVE_POSITION = 150.0

const double CHART_DRAWING_MAX_VERTICAL_AXIS_RELATIVE_POSITION = 100.0

Study Initialization/Unitialization

Below is a code example to perform a one time initialization when the study function is first run when the
study instance is added to the chart or when the Chartbook is opened which contains the study instance.

An un-initialization is also performed when the study is removed from the chart or the Chartbook is
closed.

Code Example

31

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetAskMarketDepthEntryAtLevel
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetAskMarketDepthEntryAtLevelForSymbol
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetAskMarketDepthNumberOfLevels
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetAskMarketDepthNumberOfLevelsForSymbol
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetAskMarketDepthStackPullValueAtPrice
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetBasicSymbolDataWithDepthSupport
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetBidMarketDepthEntryAtLevel
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetBidMarketDepthEntryAtLevelForSymbol
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetBidMarketDepthNumberOfLevels
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetBidMarketDepthNumberOfLevelsForSymbol
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetBidMarketDepthStackPullValueAtPrice
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetMaximumMarketDepthLevels
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scMaintainHistoricalMarketDepthData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scUsesMarketDepthData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FMarketDepthDataFileFormat.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fc_ACSILDepthBars.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSILDrawingTools.html

SCSFExport scsf_OneTimelnitializationExample(SCStudyInterfaceRef sc)
{

if (sc.SetDefaults)

/I Set the configuration and defaults

sc.GraphName = "One Time Initialization Example";
sc.AutolLoop = 0;

return;

}

int& r_lIslnitialized = sc.GetPersistentInt(1);
if (Ir_IsInitialized)
/[Perform initialization here

r_lIsInitialized = 1;

}

if (sc.LastCallToFunction)
if (r_IsInitialized)
//Perform uninitialization here

r_lslnitialized = 0;

}

return;

}

//Do standard processing here

Floating Point Value Error

It is well understood that floating-point numbers, numbers that contain a decimal point (noninteger
values), cannot be represented perfectly in computers when stored as a floating-point number. Refer to
Floating-point Accuracy Problems on Wikipedia.

In ACSIL when you are working with floating-point values, the values can be imperfect.
For example, the value 1.234 could possibly be stored as 1.233999999 (Or equivalent).

When you want to perform comparisons consisting of floating-point values, use the
sc.FormattedEvaluate function.

ACSIL File Functions

32

https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scFormattedEvaluate

ACSIL has a full file system support.

The available functions are: sc.OpenFile, sc.CloseFile, sc.ReadFile, sc.WriteFile.

Keyboard Interaction with ACSIL Studies

ACSIL supports receiving keyboard key events if these events have been requested by the ACSIL study.
For complete details, refer to:

o sc.ReceiveKeyboardKeyEvents
¢ sc.KeyboardKeyEventCode

*Last modified Wednesday, 05th July, 2023.

33

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scOpenFile
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scCloseFile
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scReadFile
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scWriteFile
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scReceiveKeyboardKeyEvents
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scKeyboardKeyEventCode

	Home >> (Table of Contents) Advanced Custom Study/System Interface and Language (ACSIL) >> ACSIL Programming Concepts
	ACSIL Programming Concepts
	Introduction
	Unique Study Instance Identifiers
	Global Variables
	Code Example

	System Studies
	Working with SCString, Text Strings and Setting ACSIL Structure Member Name Strings
	SCString Methods
	SCString::Clear()
	SCString::Format()
	SCString::AppendFormat()
	SCString::Compare()
	SCString::CompareNoCase()
	SCString::IsModified()
	SCString::IsEmpty()
	SCString::GetChars()
	SCString::GetLength()
	SCString::IndexOf()
	SCString::GetSubString()
	SCString::ParseLines()
	SCString::ParseLineItemsAsFloats()
	SCString::Tokenize()
	SCString::Append()
	SCString::Left()
	SCString::Right()
	SCString::operator ==
	SCString::operator !=
	SCString::operator <
	SCString::operator =
	SCString::operator +=

	SCString Examples
	Setting a SCString Name To A Constant String
	Creating Strings that Consist of Numbers and Text
	Using a Formated String With The Text Tool
	How To Compare Strings

	Directly Accessing a SCString
	Code Example
	Assigning to C++ string Code Example
	SCString += operator (Text String Concatenation)
	SCString::GetLength()
	SCString::GetSubString()
	Functions that use Constant Character Pointer or SCString Parameters

	Dynamic Graph Names
	Code Example

	Using or Referencing Study/Indicator Data in an ACSIL Function
	Referencing Data from a Sheet within a Spreadsheet
	Direct Programmatic Interaction with Spreadsheet Sheets
	Making Function Calls to External DLLs
	Passing ACSIL Interface Members Structure To Secondary Function
	Code Example

	Dynamic Memory Allocations Within Study Instance
	Code Example
	Alternative Method: Getting and Setting Persistent Data
	Allocating Memory for Classes
	Code Example

	Study and Related Functions for Requesting Remote Data for Price Levels
	One Time Calculations That Do Not Run During Study Updating
	One Time Processing per Bar in the Chart
	Accessing Milliseconds
	Custom Subgraph Coloring
	Limiting Study Access to Particular Chartbook and Symbol
	Finding Chart Bar Data Array Index for Start of Day
	Custom Free Form Drawing into Chart Window Using GDI (Graphics Device Interface)
	Scale Related ACSIL Variables
	Accessing Volume at Price Data Per Bar
	Not Performing Calculation/Processing during Historical Data Downloading or Full Recalculation
	Not Allowing Changes to Study Subgraph Settings
	Converting Date-Time in One Time Zone to The User Set Time Zone
	Skipping Bars/Columns with a Subgraph Draw Style
	Code Example

	Detecting New Bars Added to Chart
	Code Example

	Performing Action When Certain Time is Encountered in Most Recent Chart Bar
	Code Example

	Accessing Current Symbol Data for Other Symbols
	ACSIL Chart Drawings and Hiding a Study
	Code Example

	Getting Index of Start of Trading Day in Intraday Chart
	Code Example

	Accessing Data from Another Chart at Second to Last Index
	Code Example

	Displaying Custom Values in the Market Data Columns on the Chart / Trade DOM
	Determining New Bars When Chart is Updated
	Code Example

	Use of Dialog Windows in Advanced Custom Studies
	Filling an Area Between Two Price Levels
	Debug Logging
	Code Example

	Uniquely Identifying an Instance of a Study
	Determining if Last Chart Bar is Closed
	Drawing Study in Two Different Chart Regions
	Combining Intraday Chart File Records into Original Summary Trade
	Programmatically Accessing Historical and Current Market Depth Data
	Chart Drawing Relative Positioning
	Study Initialization/Unitialization
	Code Example

	Floating Point Value Error
	ACSIL File Functions
	Keyboard Interaction with ACSIL Studies

