Home >> (Table of Contents) Help/Frequently Asked Questions >> Help topic 76: Sierra Chart Does not
Support External Service APl Components

Sierra Chart Does not Support External

Service APl Components

¢ Introduction

o Reasons Client-Side API Components Are Not Supported

e Encryption and Compression

o Proposal for Using a Local Server Executable Program

e FIX Protocol

e Recommended Protocol

e Minimum Required Quality of Data or Trading Service for Integration

Introduction

Sierra Chart no longer is supporting client-side APl components to connect to external Data or Trading
services. The definition of a client-side APl component is executable code usually in the form of a DLL
(Dynamic Link Library) that links into the Sierra Chart executable or process that runs on a user's
computer.

Even code which is in source code format and can be compiled by us, is also not acceptable unless it is
some kind of encoding or decoding type of function library (an example would be Google protocol
buffers).

Client-side API components which run as a separate executable on a user's computer, are acceptable
for us to work with as long as they provide a TCP/IP or UDP socket method of communication. This is
how the DTN 1Q Feed and Interactive Brokers Trader Workstation work.

Sierra Chart will only be working with external Data or Trading services that provide a connection
method which does not involve APl components. This type of connection method involves a network
socket and a standard or somewhat standardized communications protocol over the network socket
which is clearly documented.

The protocols and data formats could be DTC, FIX, FIX/FAST, Google Protocol Buffers, HTTP, HTTPS,
XML, JSON, comma/tab delimited data or nonstandard data in binary/nontext or text format.

In the case of trading, the only 2 protocols that Sierra Chart will support is FIX or DTC.

If you are the provider of a Data or Trading service, then we will no longer consider adding support for
your Data or Trading service if it uses a client-side in-process APl component.

Reasons Client-Side APl Components Are Not Supported

file:///home/c/trading/SierraChartDocumentation/Descarga/index.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FContents.php.html#HelpFAQ
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#Introduction
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#Reasons
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#EncryptionAndCompression
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#Proposal
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#FIXProtocol
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#RecommendedProtocol
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#MinRequiredQualityDataTradingServiceForIntegration
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FDTCProtocol.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FDTCProtocol.php.html

. Server connection protocols which do not use an APl component are completely
independent of operating systems, programming languages, development environments
and compiler versions. This allows us to interface to the external Data or Trading
service no matter what operating system Sierra Chart will be running on and no matter
what development environment or compiler version we are using.

This is especially important as we begin to work on support for other operating systems
like Mac OS X and GNU/Linux.

We are not forced to work with a particular programming language, development
environment, or compiler version.
. ltis routine with APl components where we have had various compiling and linking
problems with building our software due to conflicts and incompatibilities with the library
files of an APl component. We may be forced to use particular DLL files and other
components which may create new sets of problems. All of this is completely eliminated
by not using an APl component.
. We do not have to maintain proprietary APl components for our project and update our
project when a new API component version becomes available and understand and
study all of proprietary changes to it. As has been previously indicated, by avoiding the
use of APIs, we do not have to contend with compiling and linking problems between
APIs and our own projects.
. We do not have to study and learn a new APl component. When working with multiple
APl components, it takes a significant amount of time to understand and learn them.
Often little details with their behavior may not even be understood until years later
causing a problem which affects our users. It is time-consuming and detrimental to us
when we have to contend with bugs and design flaws that go unresolved from other
developers. It is like working with a whole new language.
. These APl components follow no established standard and are often designed in such a
way to work best with the developer's own software rather than third-party software.
The design of an API component generally is bizarre in their design and nothing but a
headache to understand. This makes them very difficult and time-consuming to
integrate into our software. The integration of APl components has never been proper
because it is impossible to accomplish. There would always be stability and
organizational problems with using them.
. The model of how an APl component works is proprietary, and is designed to follow a
model of how the outside developer thinks is best, but is incompatible with other
software programs. The integration of the APl component can only be regarded as a
hack. This is detrimental for us, and detrimental for the end-user. Quality and proper
integration to a Data or Trading service cannot be achieved with in-process API
components. This has been proven time and time and time again.
. One point of great difficulty is when an APl component makes a call back on a thread
different than the thread that created the object.
o It cannot be assumed that the client program is necessarily thread safe in

every possible way and can easily handle the content of the callback on a

background thread. Multi-threaded programming is highly complex

programming and most programmers do not do it entirely safely. It is our

position that an APl component must only make callbacks upon the thread
which created the API object or called its "Connect" (or similar) function. The
client program can then dedicate its own thread for creating the API object if
it wants to use a separate thread for the APl interaction and callbacks.

o Inthe cases where client-side API components have made callbacks on a
thread different than the main program thread or the thread which created
the object, this has required us to take a copy of the callback data and pass
it to the primary thread for processing, except for basic market data.

This has involved rather sophisticated programming to accomplish reliably.
Sierra Chart does use threads for certain purposes. However, other than for
basic market data, Sierra Chart cannot safely handle callbacks in other
threads. It is our contention that it must be avoided to use a separate thread
for callbacks from an APl component used by other programs. There is not
anything wrong with separate threads to process network 1/0. However,
when interacting with an outside program, you should let the client program
be in full control of threading and not create a separate thread that the client
program never created, does not have implementation details of, does not
fully understand, and has no control over.

o If thread synchronization is not done properly considering every possible
scenario when 2 threads interact with a shared object, then this can lead to
program instability. The use of multiple threads can lead to deadlocks which
are very hard to isolate the source of. Multithreaded programming is very
complex and most developers do not do it properly. Why you would introduce
a massively complex model to developers most likely who are not highly
experienced or knowledgeable with threading, makes no sense to us.

o If you believe that creating a thread in your APl and making an uncontrolled
callback with data on that thread into a client program is acceptable, then
why is no such model like this followed with Windows Sockets for network
communication? From our perspective, this comes across as substandard
and the correct technical answer is that what you are doing is simply
incorrect.

Have a look at how Windows Sockets works for both Overlapped I/O and
asynchronous window notification messages. When a socket I/O operation
completes or the socket is readable or writable, there are synchronized
mechanisms to notify the thread that is using Windows sockets of the event.
There is not an independent thread that does this in an uncontrolled or
unsynchronized way.

Therefore, you might say why not use a synchronization object like a mutex

or critical section to perform synchronization within our software. In order to

do that, every object that your background thread interacts with either

directly or indirectly, would have to be synchronized. This would massively

increase the complexity of our and others programs, and hurt performance.
o This issue has been raised with a couple of API providers who have this

http://support.microsoft.com/kb/181611

8.

10.

11.

12.

13.
14.

kind of callback behavior. In the case of a C++ client program, it is still not
shown how the method is valid by using a background thread that you
create which makes an event callback in an uncontrolled and
unsynchronized way.

In order for your API to be friendly and flexible for all kinds of applications,

you would have to implement more than one of the methods that Windows

Sockets provides to notify of an event or an I/O completion. Rather than

doing that, it make more sense for you to provide a direct socket connection

to your services or follow our Proposal for Using a Local Server Executable

Program.
API components can and do throw exceptions for trivial things such as an invalid
parameter or even an invalid symbol, rather than returning a clear error code indicating
this kind of problem. This requires excessive code to trap exceptions and to recover
from the error. Exceptions should be reserved for serious hardware faults only. And
even then, there is a better model for handling exceptions rather than the current typical
way in which they are, which is terminating an application. Software programs should
not be throwing exceptions or certainly not throwing them for something trivial and
passing them up to the client. An APl component throwing an exception for something
trivial, is only violently taking control away from the path of execution that we have
established within a function. The question we always have, is what exactly would throw
an exception, and what exactly is the exception type?

. API components can and do have faults which will crash Sierra Chart and we have no

control over that. APl components often temporarily freeze programs when connecting
and disconnecting. We have seen APl components not properly and gracefully handle
network communication. APl components have peculiar behaviors that have to be
understood and worked around. Another way of saying this, is that the use of client-side
API components makes us look like incompetent programmers because of the
problems they introduce into our software. This cannot be stressed enough.

Sierra Chart has no control over memory use of a client-side APl component and these
components can use excessive computer memory.

Sierra Chart has no control over the processing going on within a client-side API
component and these components can use excessive CPU usage, freeze, and lock up .
Client-side APl components have unusual and odd behaviors which cannot be
understood or resolved by outside developers and cause various problems in our
software.

There are no external APl components to redistribute if an APl component is not used.
We have full control over the process of connecting and disconnecting and we can
handle it in a graceful and reliable way when not using an APl component. We are able
to connect and disconnect when needed. With an APl component, we have no idea as
to the status of its own internal network connection. You have hidden that from us. The
concept that somehow you are making programming easy for people by handling the
network communication, is untrue. We cannot stress that enough. Related to this, when
there is a network communication error for direct network connections for services that
allow a direct connection, Sierra Chart will clearly display the standard network error
message, in the users own language, so it is clear to the user and to us what the source

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#Proposal

of a network communication problem is.

APl components have various ways and codes to indicate communication problems,
usually in ways which are not clear. This makes troubleshooting connection problems
very difficult for us and our users.

15. Working with APl components has proven in every case to greatly increase the
development time due to bugs within the API client software, due to highly proprietary
designs that have to studied and understood, due to odd behaviors, and because they
provide interfaces which are not compatible.

A proprietary APl component which does not have reviewable source code, is a black
box with all kinds of unknown behaviors. They do not make anything easier for us, only
significantly more difficult. Do you realize, that in all cases you literally increase the
development time with an APl component as much as 20 times or higher by
providing an APl component rather than providing a direct socket and a simple
set of standardized messages to exchange between the Client and the Server?

When you are working with professional developers who have exceptionally high
programming standards and consider every possible detail to produce the very best
software, a client-side APl component is wholly unacceptable because we do not have
control over it and we do not know how it works.

This point cannot be stressed enough. We have a very exceptional negative view of
API components as having worked with them for more than 17 years and have seen
nothing but problems from them as we have described in this section and have suffered
severely from them. It is time for a change, and for this nonsense of APl components to
come to an end.

16. Sierra Chart has a clear established policy that we do not work with API
components. This policy will be followed even to the detriment of not expanding
business with services that only use client-side APl components. We have a strong
belief that client-side API components are going away because they simply make no
reasonable sense and are not of acceptable quality, especially when you are working
with professional developers like us.

We are clearly seeing this trend now with the move away from these components and
greater use of FIX, DTC and Google Protocol Buffers with direct socket connections.

17. Another way to understand our position about in process APl components is to consider
how a web browser connects to a website. Does every website provide an API
component? Of course not. Instead a web browser uses a network socket connection
and uses the HTTP protocol. The specific implementation details of this is determined
by the web browser and not by anyone else. Although the web browser will follow
standards with its external interfaces to websites. But the internal implementation is as
the web browser requires.

The author of this document has over 20 years of experience in this industry and working with API
components. | can unequivocally say, that this practice of creating API components that run with an

address space of another program, is a substandard concept in the case of an external Data or Trading
service, out of date (although was never reasonable to begin with), is not helpful, is disorganized,
promotes substandard interfacing to your systems because the user of the APl has no control over the
input-output model being used, absolutely extremely problematic for each and every one of the above
reasons, and does not make any reasonable sense that we have ever seen and will never see.

This is an open complaint about this practice. As we previously said, we are not supporting client-side
API components any longer, if they run within the address space of a program. You need to recognize
that you are an external service with systems located elsewhere on the Internet and what you are
providing is a request and response based service and/or a streaming data service.

The only reasonable way to interface to your systems is using a network socket. Trying to wrap up your
service into an API which runs into an address space of another program, never has worked well
because simply the concept is incompatible with the type of service you are providing.

If you really want to know the truth, the author has had it with APl components. APl components make
us look like idiots and incompetent programmers, have caused us to suffer massively with numerous
problems, wasted programming time, wasted support time, and have caused us to waste enormous
amounts of time understanding and working with stupid APl components. It has been extremely
detrimental, harmful and a very awful experience working with API components. Please do not mention
them to us.

Many of our users have read this particular page, and those who understand the subject, 100% agree
with what we have said.

Encryption and Compression

In the case where encryption is required, SSL/TLS can be used. Sierra Chart supports SSL/TLS (secure
sockets layer) through the use of Open SSL for encryption.

The freely available stunnel program can also be used for for SSL/TLS encryption. In our case, we do
not need to rely on this because we have our own implementation.

There also are socket libraries available which support SSL/TLS. Which further simplifies secure socket
network communication. In the case of when using HTTPS, this kind of functionality is part of operating
systems or programming libraries. So it is very accessible to any programmer.

In the case where compression is required, we support zlib compression. This is a widely used
compression library which is easy to work with. Many programming libraries have built-in support for this.

Proposal for Using a Local Server Executable Program

If you are a Data or Trading service provider currently providing an APl component that runs within the
address space of a program, and do not wish to support direct socket connections to your backend
systems, then we offer the following proposal.

If you are open to providing a direct connection to your backend, then this is good and refer to the
Introduction above instead of this proposal below.

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#Introduction

The purpose of this proposal below is to put forth an alternative to the community, to using a direct
socket connection to the backend. We tend to suspect the reasons that services that provide a client-
side API that runs within the address space of a program to connect to a service's backend relates to
encryption, compression and the ability to ID the local machine, which you feel for some programmers
would be hard to implement. In the case of an encryption and compression, these are really not difficult
to implement as explained in the Encryption and Compression section.

We have long recognized the inherent problems with everyone following their own protocol and
compounding that with a proprietary black box DLL approach for interfacing. Especially if the black box
uses something like this confusing and highly proprietary Microsoft COM (component object model).
Which at this time is actually out of date and platform specific.

This proposal is meant to resolve this. We also hope that because Sierra Chart has established itself as
one of the most reliable, stable and fastest programs out there in the industry, that we have significant
credibility with our proposal. We hope that this proposal gains interest and becomes the standard when
a direct connection to your backend systems is not offered.

1. Make your API a standalone executable with a small status window, rather than a DLL
or library that runs within the address space of the program using it. We would launch
this executable when we want to make a connection. The executable would
automatically shut down when there are no local connections to it. Every time we make
a connection, we always will run this executable. The executable needs to be designed
to not allow a second instance of itself. Although if there are multiple installations of the
executable on a system, each of those should be able to run independently. The status
window can show connection state, a log and other information. Here is an example
below.

IQFeed Connection Manager

—General
P BE.112.156.221 Port:
Meximum Symbols: 500 MNumber of symbols
Clients connected: 4 Seconds since last update
Reconnections: 0 Attempted Reconnections
Starttime: Apr27 6:51PM Markettime: Apr27 7:23Ph
Status: Connected I0Feed Yersion: 5.0.04

Login D 210273 Authorizations: =~

Interet bandwicdth——————————————————— ~ Local handwiclth
Total KB 42.35 Taotal KB
KBfsec: 0.07 KBfsec:
Awerage KB/sec: 0.02 Awverage KBfsec:

Dane

2. This client-side executable server program will listen on a local TCP/IP socket using the
specified port number passed to it on the command line by the client program that
started the process.

3. The communication protocol over the local network socket will use the open
specification Data and Trading Communications (DTC) protocol which is documented
on the DTC page.

4. This kind of design completely eliminates incompatibilities involving differing compiler
versions that you use, and we use. You would no longer have to provide any

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#EncryptionAndCompression
file:///home/c/trading/SierraChartDocumentation/Descarga/images/IQFeedConnectionManager.png
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FDTCProtocol.php.html

documentation related to versioning, compiling, and linking or provide support for
various issues which arise from these. By working with a network socket protocol you
are working with a completely language and operating system independent protocol.

. With this kind of design, your server executable program can serve multiple programs
running on the same computer. This minimizes bandwidth usage to your remote server.
You can even look at the address of the incoming socket connection and restrict
connections only to the localhost.

. This kind of design is exactly how DTN IQ Feed and the Interactive Brokers Trader
Workstation (TWS) APl work. The Interactive Brokers TWS is a very successful and
widely used API proving the sensibility of this design.

In the case of IQ Feed, the incoming and outgoing message format over the socket, is a
new line terminated and comma delimited text string. This is not efficient and binary
encoding should be used instead.

By using a local server executable program we have not observed any significant
additional CPU overhead with this kind of design on multicore CPUs. While we have not
done actual performance timing in regards to the additional delay introduced by using a
local network socket, it is believed that this would be insignificant and down into the
microsecond level.

When using the DTC Protocol, the communication between the local client and server
will be extremely efficient.

. Another advantage to this kind of design is that you allow programs from any language
to interface to your services. You do not need to have a .NET version, a C++ version, a
Java version, or whatever version of your API. You only need to have a different
version of your executable for whatever operating systems you wish to support.

For example, the Interactive Brokers Trader Workstation software is Java and we have
always connected to it using a socket from the Sierra Chart native C++ program. The
two programs have never caused any interference to each other.

. It may be your position that socket programming is difficult, and that providing a client-
side API with functions that can be called and callback functions, that you are making
things easier for the programmer. As we have stated in the Reasons Client-Side API
Components Are Not Supported section, for us that is most certainly not the case and
things become dramatically more difficult.

In our experience socket programming is easy. However, in the case of when using
DTC, wrapper classes which handle the network socket communication are in the
process of becoming available. More on this in the next list item below.

If your current APl makes a callback on another thread, then you have significantly
increased the complexity of using your API requiring many advanced programming
considerations, at least for C++. Therefore, you have not made the interface to your
systems easier. This is explained in the Reasons Client-Side APl Components Are Not

Supported section.

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FDTCProtocol.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#Reasons
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FDTCProtocol.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#Reasons

9.

10.

11.

12.

In order to alleviate your users of socket programming, what we recommend doing is to
write a class in the most popular languages which handles the socket communication to
your executable server program. These classes will provide the Request functions and
Response callbacks. These classes will also handle launching the server executable
program. In the case of DTC, these classes are becoming available. The user would
take the source code for the class for their language and they would just simply include
it into their project and use it in the most appropriate way.

In the case of web browsers, they recognize the importance of using a separate
process to run code developed by other developers. Google Chrome will run every
webpage within a separate process (Quote: Chrome uses a "multiple processes
architecture”, which means its processes are designed to work independent of one
another. So issues in one tab should not affect the performance of other tabs or the
overall responsiveness of the browser.). Opera and Firefox use plug-in containers that
run as a separate process as well. This is a very important point which gives this
proposal sensibility and credibility.

We recognize that we could wrap your API library component into a executable
ourselves and establish a socket connection to it. However, we would not do that for
many of the same reasons stated in Reasons Client-Side APl Gomponents Are Not
Supported. Additionally, it only makes sense that the service provider is fully
responsible for all of the code running within the local server process and provide a
direct local socket connection to their service.

There are 2 existing client-side APl components that we work with (One of them being
Rithmic) where it is less efficient for us to wrap the APl component ourselves rather
than the original developer. The reason for this is that every time a trade occurs, there
is a separate call back from their APl with this one single trade. When that trade is
received, we would write into the local socket. We would have to do a separate write for
every single trade. In the case where there is hundreds of symbols being followed, or
there is very high volume for a particular symbol, this is a lot of writing into the local
socket. This is definitely not efficient and causes excessive CPU usage. Whereas if the
original API developer were to do this, they could implement this more efficiently. When
they read from the remote socket to their remote server, they may have a buffer full of
100 trades received in that moment, they could then fill out a outbound memory block
with all of those 100 trades, use overlapped I/O, and pass that to the local socket write
function. Since we do not have access to the API source code, do not wish to be
involved in another developers code, it is most efficient that the APl component
developer, follow this proposed design rather than us patching it.

It is our position, that if this is the only method you provide for interfacing to your
systems, assuming you do not provide a direct connection to your backend systems, it
will be embraced by everyone, and they will be very pleased with it. There can only be
acceptance of the model described here. You should not hesitate to offer this out of
fear of somehow it not being accepted. IQ Feed, a high-performance data feed uses it.
And this proposal is coming from us and we have established ourselves as a provider
of a very well respected and high-performance trading and charting program. We have
already established a position that if you provide a client-side APl component which
runs in the address space of a program, we will not use your service. In addition to all of

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FDTCProtocol.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252Fhelpdetails76.html#Reasons

this, you are going to greatly simplify support for yourselves because your only
responsibility is to support your client-side server executable program.

13. Automatic Updating: Another advantage to using a separate executable which
provides access to your Data and/or Trading services is that you can build into it,
automatic updating of your program files so you can be sure that all users are running
the latest files. You do not have to rely upon outside developers to do any updating.
Sending outside developers library files that have to be compiled into a program, is a
very inefficient way of distributing an update.

14. You will have the ability to include pop-up messages that you want to send your users if
you have a separate server executable.

15. When using a separate process to interface to your backend systems, when the client-
side developer has a problem in their program with a memory leak or an exception, then
both sides will know for certain that the problem is within the developers own program
and not your APl because your APl is in a separate process. This is also another big
advantage to using a separate process.

FIX Protocol

The FIX Protocol was meant as a solution to some of the issues explained on this page. While for us
implementing our own FIX message handler for sending and receiving messages is no problem at all
and what we have done especially being that we have stringent programming standards, it can be
difficult for an individual programmer writing something for their own use or for a small user base.

For this reason it is clear that Data and Trading services that want to provide as much access to their
services as possible to the average programmer, avoid the use of FIX to access their systems. Although
some of them do support it as an alternative.

There are FIX engines out there with make integration easier to FIX, but we have found they are of poor
quality, difficult to use, do not meet our standards, or they are prohibitively expensive.

The other problem with FIX that we have heard is that it is not efficient for market data. Our experience
in a native C++ program with our own FIX processing functions, is that the overhead of FIX is of virtually
no significance. And definitely would be of no significance if a separate CPU core is used for message
processing. However, we have no experience with using FIX on the server side serving hundreds or
thousands of clients.

The solution to these issues with FIX, is to use the open specification Data and Trading Communications
(DTC) protocol which is documented on the DTC page.

Recommended Protocol

For the technical specifications which detail an ideal protocol supported by Sierra Chart, refer to the
open specification Data and Trading Communications Protocol.

Minimum Required Quality of Data or Trading Service for
Integration

10

http://www.fixprotocol.org/what-is-fix.shtml
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FDTCProtocol.php.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FDTCProtocol.php.html

For Sierra Chart to undertake development effort to integrate to a Data or Trading service, the following
are the requirements:

e The service must be consistently reliable and have a proven track record.

o The service must use a protocol-based method of integration and this protocol must be
thoroughly documented.

e The interface documentation needs to be up-to-date, accurate, orderly and easily
accessible and found.

e The protocol must be logically and orderly designed.

e The service must be well engineered.

e The service must be well supported.

e The service must be under active development and maintenance.

o The service must be willing to accept requests for improvements or changes and
implement those which are regarded as critical in order to accomplish a reliable and
quality integration between Sierra Chart and that service.

¢ In the case of trading we will only work with the FIX and DTC Protocols.

e There must be no in-process APl component method of integration or a DLL that we
would have to create that runs within a separate process provided by the services
provider.

o If there is not a not a direct connection to a remote server, then this is considered a
negative and will require special consideration.

o When requesting market data for a symbol, or submitting an order for a symbol, the
symbol itself must be used and not some other "identifier" of some kind which has to be
requested from the server ahead of time.

The above are considered critical in order for Sierra Chart users and for Sierra Chart development to
have a reasonable working relationship with that service and not get burdened with spending time on
continuous problem resolutions which is very detrimental for us and for the users.

If the Data or Trading service does not meet the above requirements, but will work towards generally
meeting those requirements in a reasonable amount of time, then this will satisfy our requirements as
well.

And it must be understood by Trading services that an unreliable service or poorly designed interface to
that service can and does result in financial losses. It is for this reason, that we will not accept
substandard trading interfaces. A trading interface must be based upon the FIX or DTC Protocols. We
will not accept anything else as a matter of policy.

*Last modified Wednesday, 22nd February, 2023.

11

	Home >> (Table of Contents) Help/Frequently Asked Questions >> Help topic 76: Sierra Chart Does not Support External Service API Components
	Sierra Chart Does not Support External Service API Components
	Introduction
	Reasons Client-Side API Components Are Not Supported
	Encryption and Compression
	Proposal for Using a Local Server Executable Program
	FIX Protocol
	Recommended Protocol
	Minimum Required Quality of Data or Trading Service for Integration

