
Home >> (Table of Contents) Advanced Custom Study/System Interface and Language (ACSIL) >>
Working with ACSIL Arrays and Understanding Looping

Working with ACSIL Arrays and
Understanding Looping

Introduction
Overview of sc.BaseData[][], sc.Subgraph[].Data[], sc.Subgraph[].Arrays[][] Arrays
Array Indexing and Sizes
Automatic Array Bounds Correction
Automatic Looping/Iterating
Manual Looping/Iterating
When the Study Function Is Called
Array Types
Array Indexing in Trading DOM Windows
When Arrays are Cleared

Introduction
This documentation page provides an explanation on how to work with the three most common arrays in
the Sierra Chart Advanced Custom Study Interface.

It also discusses another important topic, the two methods of looping or iterating through all of the
bars/columns in the chart. Looping through all of the bars/columns in the chart is necessary in order to
fully calculate your study to produce a result that goes across the entire chart.

The two methods of looping are Automatic Looping and Manual Looping. These are exclusive of
each other and you will never use both methods of looping in the same function. Otherwise, you would
cause significant inefficiencies.

The preferred method is Automatic Looping.

Overview of
sc.BaseData[][]

sc.Subgraph[].Data[]
sc.Subgraph[].Arrays[][]

The three most common arrays you will work with are:

sc.BaseData[][]
sc.Subgraph[].Data[]
sc.Subgraph[].Arrays[][]

1

file:///home/c/trading/SierraChartDocumentation/Descarga/index.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FContents.php.html#AdvancedCustomStudySystemInterfaceandLanguage
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#Introduction
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#ArraysOverview
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#ArrayIndexing
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#AutomaticArrayBoundsCorrection
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#AutomaticLoopingIterating
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#ManualLooping
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#WhenTheStudyFunctionIsCalled
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#ArrayTypes
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#ArrayIndexingInTradingDOMWindows
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#WhenArraysAreCleared
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDataIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphArrays

The sc.BaseData[][] arrays contain the data for the main price graph in the chart. The sc.BaseData[][]
arrays are used as input data to your study.

The sc.Subgraph[].Data[] arrays, (shorthand notation: sc.Subgraph[][]), are for your studies displayable
output and can be used to hold the results of background or intermediate calculations.

There are also the extra arrays, sc.Subgraph[].Arrays[][], that can be used to hold the results of
background or intermediate calculations for a sc.Subgraph[].Data[] array that is graphed on the chart.

The next two sections provide examples on how to work with these arrays.

A good way to understand how to organize your study calculations and use the sc.Subgraph[] arrays to
hold the results of those calculations is to ask yourself how would I do this if I were using one of the
Sierra Chart Spreadsheet Studies. If your study would require 2 Spreadsheet columns, one for a
background calculation and another for the final result to be graphed and visible, then you would use for
example sc.Subgraph[0][sc.Index] (shorthand notation) for the final result to be graphed. Make sure
sc.Subgraph[0].Name is set for the Subgraph. For the background calculation you would use
sc.Subgraph[0].Arrays[0][sc.Index].

Array Indexing and Sizes
The sc.BaseData[][] arrays have 2 indexing operators ([]). The second indexing operator is for accessing
the individual values within the chart Base Data array specified by the first indexing operator.

For the second indexing operator, the first element starts at 0, and the last element is sc.ArraySize - 1.
Examples: sc.BaseData[SC_LAST][0], sc.BaseData[SC_LAST][sc.ArraySize-1]. An index value of 0
for the second indexing operator is the leftmost bar in the chart.

The size of the second array can also be determined by sc.BaseData[0].GetArraySize(). If this function
returns 0, then the array is not allocated and is currently unused.

The sc.BaseDateTimeIn[] array has 1 indexing operator ([]). This operator is for accessing the
individual SCDateTime variables within the sc.BaseDateTimeIn[] array. The first element starts at 0, and
the last element is sc.ArraySize -1. Examples: sc.BaseDateTimeIn[0] ,
sc.BaseDateTimeIn[sc.ArraySize-1]. The first element is the Date-Time of the leftmost bar in the chart.
This array always contains the starting time of the chart bars.

The sc.DateTimeOut[] array has 1 indexing operator ([]). This operator is for accessing the individual
SCDateTime variables within the sc.DateTimeOut[] array. The first element starts at 0, and the last
element is sc.OutArraySize -1. Examples: sc.DateTimeOut[0] , sc.DateTimeOut[sc.OutArraySize-1].
The first element is for the leftmost bar in the chart.

The sc.Subgraph[][] / sc.Subgraph[].Data[] arrays have 2 indexing operators ([]). sc.Subgraph[][] is a
shorthand version of sc.Subgraph[].Data[]. The second indexing operator is for accessing the individual
values within the Subgraph array specified by the first indexing operator. For the second indexing
operator, the first element starts at 0, and the last element is sc.ArraySize - 1. Examples: Examples:
sc.Subgraph[0][0] , sc.Subgraph[0][sc.ArraySize-1]. An index value of 0 for the second indexing
operator is the leftmost bar in the chart.

2

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDataIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FSCDateTime.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FSCDateTime.html

If sc.IsCustomChart is set to 1, then the last element of sc.Subgraph[].Data[] is specified as
sc.Subgraph[0].Data[sc.OutArraySize-1].

The sc.Subgraph[].Arrays[][] arrays have 3 indexing operators ([]). The third indexing operator is for
accessing the individual values within the specified Extra Array (second indexing operator) for the
specified Subgraph (first indexing operator). For the third indexing operator, the first element starts at 0,
and the last element is sc.ArraySize -1. Examples: sc.Subgraph[0].Arrays[0][0] ,
sc.Subgraph[0].Arrays[0][sc.ArraySize-1] . An index value of 0 for the third indexing operator is the
leftmost bar in the chart.

If sc.IsCustomChart is set to 1, then the last element of sc.Subgraph[].Arrays[][] is specified as
sc.Subgraph[0].Arrays[0][sc.OutArraySize-1].

With all of the above arrays and in the case of Automatic Looping, you would access the element at the
current index (the index at which your study function needs to perform calculations at) by using sc.Index
with the last indexing operator or with the single indexing operator if there is only one indexing operator
supported with the array.

Example: sc.BaseData[SC_LAST][sc.Index]. This will be understood better when you review the
Automatic Looping/Iterating section.

To get the size of an array, use the GetArraySize() member function. Example:
sc.Subgraph[0].Data.GetArraySize(). This is particularly useful when you have accessed an array from
another chart which has different array sizes compared to the chart where the arrays were gotten from.

Automatic Array Bounds Correction
With all Advanced Custom Study Interface and Language provided arrays, they are all safe with the use
of invalid index values with the indexing operators.

When the specified index value is out of bounds, it will automatically be corrected to be just within the
nearby bound. For example using a negative number with an indexing operator will result in the index
being set to zero.

When using an index value which is greater than or equal to the array size, will result in the index being
set to the array size minus 1. For example the following code will access the first element of the array
and will not cause any type of error or exception: sc.Subgraph[].Data[-1].

Automatic Looping/Iterating
When your study function uses automatic looping, then it is automatically called once for every bar or
column in the chart when the study is initially calculated. If there are 100 bars in the chart, then it will be
called 100 times when your study is initially calculated. After that, the study function is called as the latest
bar is updated and new bars are added.

sc.Index is set to the index of the bar/column in the chart that your study function is being called for.
This is a zero (0) based index. During normal chart updating, sc.Index will initially start at the sc.Index
value of the last prior call to the study function. This will be the index of the last bar in the chart before

3

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scIsCustomChart
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scIsCustomChart
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#AutomaticLoopingIterating

any new bars have been added.

For information about when the study function is called during normal chart updating after the initial
calculation of the study, refer to When the Study Function Is Called .

sc.CurrentIndex and sc.Index are the same. They are two different variables that are set to the same
index value always. You can use either one. Normally the documentation will refer to sc.Index. sc.Index
is equal to the elements in the sc.BaseData[][] arrays that need to be processed and/or the elements in
the sc.Subgraph[][] arrays that need to be filled in. This will be more clear when you look at the code
example below.

If you are creating a custom chart by setting sc.IsCustomChart to 1 (true), this is very unlikely, then
sc.Index only refers to the elements in the sc.BaseData[][] arrays to process, assuming your custom
chart function uses the sc.BaseData[][] arrays.

Automatic looping is activated by setting sc.AutoLoop = 1; in the code block at the top of your function
for setting the defaults and configuration. When you create a new Advanced Custom Study file, the
template function in that file, sets this variable to 1 (true). Therefore, by default, automatic looping is
done for new functions. However, if sc.AutoLoop is not set, then its value will be zero and automatic
looping will be off.

sc.Index initially starts at 0 and increments up to sc.ArraySize -1 when the study is fully recalculated.
This happens when the chart is loaded or reloaded. Each time it increments, your study function is called
again. There can be other cases for a full recalculation. For example, when you add or remove a study
from a chart. Another case a full recalculation can occur is when you are using a custom chart such as
the Renko Chart study or the Point and Figure Chart study and a new bar which was added by one of
the studies is removed. In this case a full recalculation of the other studies is necessary. In this case
sc.Index will start back at 0 and increment back up to the sc.ArraySize-1.

Here is an example of writing code that supports automatic looping:

4

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#WhenTheStudyFunctionIsCalled
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDataIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scIsCustomChart
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDataIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDataIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#scAutoLoop

/*==
This function demonstrates using sc.AutoLoop.
--*/
SCSFExport scsf_AutoLoopExample(SCStudyInterfaceRef sc)
{

 if (sc.SetDefaults)
 {

 // Set the configuration and defaults
 sc.GraphName = "Auto Loop Example";

 sc.StudyDescription = "This is an example of the new auto loop method for Advanced Custom Studies.";

 // Setting sc.AutoLoop to 1 (true) means looping is performed
 // automatically. This means that if there are 100 bars in your
 // chart, this function is called 100 times initially.
 sc.AutoLoop = 1; // true

 sc.Subgraph[0].Name = "Average";
 sc.Subgraph[1].Name = "Back Reference Example";

 sc.Subgraph[3].Name = "Current Low Price";
 return;
 }

 // Do data processing
 sc.SimpleMovAvg(sc.BaseData[SC_LAST], sc.Subgraph[0], sc.Index, 10);

 // The following line demonstrates referencing data one element back from
 // the current index.
 sc.Subgraph[1][sc.Index] = sc.BaseData[SC_LAST][sc.Index - 1];

 // The following line demonstrates referencing data at the current index.
 sc.Subgraph[3][sc.Index] = sc.BaseData[SC_LOW][sc.Index];
}

Manual Looping/Iterating
This section describes manual array element looping or iterating. Manual looping is going to be more
efficient than automatic looping because the study function is called only once during a full recalculation.

However, Automatic Looping is easier to use unless your study function does not require automatic
looping or it would instead work best with manual looping. For example, you would want to use manual
looping if the custom study does not need to perform a calculation at each chart bar.

Manual looping needs to be properly implemented. If it is not implemented correctly by using
sc.UpdateStartIndex, then it becomes very inefficient.

If sc.AutoLoop is set to zero (0), which is the default if it is not specified in the sc.SetDefaults code
block at the top of the study function for setting the defaults and configuration, then manual looping is
specified and you need to use a for loop in the study function to iterate through all the sc.BaseData[][]
and sc.Subgraph[][] data array elements.

The function must use the sc.UpdateStartIndex variable to determine what element Index to begin the
for loop at. If you were to start the loop at position zero always, your study will be very inefficient. Instead
you must use sc.UpdateStartIndex.

5

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#AutomaticLoopingIterating
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scUpdateStartIndex
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scSetDefaults
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scUpdateStartIndex

sc.Index is not used with manual looping.

During normal chart updating and after the initial study calculation, refer to When the Study Function Is
Called to know when the study function will be called.

When there is an event which will cause the study function to be called, it will be called at the Chart
Update Interval set in Global Settings >> General Settings , and not more often. So it does not
happen immediately upon, for example new market data received. It will be soon as the Chart Update
Interval has elapsed and there is new data which causes an update.

The following is more information on sc.UpdateStartIndex and example code for manual looping:

More information about sc.UpdateStartIndex

sc.UpdateStartIndex is set by Sierra Chart to the index where your primary for loop will start
looping from. This is the index in the sc.BaseData[][] arrays where updating has begun. This is
the same index where updating should begin in the sc.Subgraph[][] arrays.

If you are creating a custom chart, sc.IsCustomChart is set to true (this is very unlikely), then
sc.UpdateStartIndex only refers to the sc.BaseData[][] element to process.

Example

for (int Index = sc.UpdateStartIndex; Index < sc.ArraySize; ++Index)
{
 // fill in the first subgraph with the last values
 sc.Subgraph[0][Index] = sc.BaseData[SC_LAST][Index];
}

The above loop will always fill in and update the necessary elements in the one output
(Subgraph) array we are using (sc.Subgraph[0][]). If you are using manual looping, most studies
will require a primary for loop to iterate through the elements in the arrays unless one is clearly
not required based upon what the study function is doing.

This is a good example of the primary loop that you will need to use. You will begin at
sc.UpdateStartIndex. You will loop from there up to, but not including, sc.ArraySize. You do not
include sc.ArraySize because the arrays are zero-based, meaning the last element in the array
is at the index sc.ArraySize - 1.

See below for a complete study function using manual looping.

Example Code

6

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACS_ArraysAndLooping.html#WhenTheStudyFunctionIsCalled
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scUpdateStartIndex
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDataIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scIsCustomChart
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDataIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scArraySize
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scArraySize
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scArraySize

/*==
This function demonstrates manual looping using a for loop.
--*/
SCSFExport scsf_ManualLoopExample(SCStudyInterfaceRef sc)
{

 if (sc.SetDefaults)
 {
 // Set the configuration and defaults
 sc.GraphName = "Manual Loop Example";

 sc.StudyDescription = "This is an example of using manual looping.";
 sc.AutoLoop = 0; // 0 is the default: there is no auto-looping

 sc.Subgraph[0].Name = "High Low Difference";
 sc.Subgraph[1].Name = "High - Low Average";

 sc.Subgraph[2].Name = "Back Reference Example";
 sc.Subgraph[3].Name = "Forward Reference Example";

 return;
 }

 // Do data processing
 for (int Index = sc.UpdateStartIndex; Index < sc.ArraySize; Index++)
 {
 // Calculate the difference between the high and the low
 sc.Subgraph[0][Index] = sc.BaseData[SC_HIGH][Index] - sc.BaseData[SC_LOW][Index];

 // SimpleMovAvg will fill in the data element in sc.Subgraph[1] at index Index.
 sc.SimpleMovAvg(sc.Subgraph[0], sc.Subgraph[1], Index, 10);

 // Copy the previous last price (Index-1) to subgraph array number 3
 sc.Subgraph[2][Index] = sc.BaseData[SC_LAST][Index - 1];

 // Copy the next last price (Index+1) to subgraph array number 4
 sc.Subgraph[3][Index] = sc.BaseData[SC_LAST][Index + 1];
 }
}

When the Study Function is Called
This section describes the different conditions for when a study function is called by a chart it is
contained within. A study function begins with scsf_ and is contained in a CPP file. This file is compiled
into a DLL file which is the executable file.

The study function will be called separately for each instance of the study.

Initial/First Call

The initial or first call into a study function occurs when a study instance is added to a chart, a
Chartbook is opened and a chart in that Chartbook contains an instance of the study, or a Study
Collection is applied to a chart and an instance of the study is part of that Study Collection.

In the case when a Chartbook is opened, a study function for study instance on that chart is only
called when the chart data loading is complete for that chart. When that data loading is complete,
all of the studies on that chart are fully recalculated.

7

There are at least two calls to the study function for the conditions described above. Once to set
the defaults of the study. In this case sc.SetDefaults is set to 1. The second call is for the full
calculation of the study.

During this second call into the study function there is a full calculation. Read the description
below.

Full Calculation/Recalculations

A study will be fully calculated/recalculated when it is added to a chart, any time its Input settings
are changed, another study is added or removed from a chart, when the Study Window is closed
with OK or the settings are applied. Or under other conditions which can cause a full
recalculation.

Other conditions include: When the chart the study is applied to is being referenced by another
chart and the other chart has been fully recalculated, the chart data loaded, or a historical data
download finishes. For more information, refer to References to Other Charts and Tagging. The
rebuilding of the internal Trades List in a chart, if it is being used, which can occur when changing
the Trade Account on the chart or enabling or disabling Trade Simulation Mode.

In the case of manual looping, the study function will be called 1 time with sc.UpdateStartIndex
set to 0, and usually will be called again when the chart is immediately updated after. On this
additional call, sc.UpdateStartIndex is set to sc.ArraySize -1.

In the case of automatic looping, the study function will be called once for each bar in the chart.

sc.Index starts at 0 and increments for each bar in the chart. Therefore, this is a series of calls
which can be many thousands of times. Once for each chart bar. This group of function calls is
considered the full calculation of the study.

After this full calculation is complete in the case of automatic looping, usually there will be an
additional call into this study function when the chart is immediately updated after. During this
additional call, sc.Index is set to sc.ArraySize -1.

Update Study Function Calls

A study function will be called with either manual or automatic looping, with one or more of the
conditions given below. None of the conditions described below, cause an immediate call. They
flag that the study function needs to be called, and the call occurs at the Chart Update Interval
set in Global Settings >> General Settings .

Each individual chart can also override this setting and use their own independent Chart Update
Interval. We recommend charts be set to use their own independent Chart Update Interval if they
need to use either a shorter or longer interval compared to the global settings.

The call into the study function will just be an update call with sc.Index/sc.UpdateStartIndex set
to the prior array size - 1. The following are the conditions for when this call happens.

There is new trade market data received

8

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scSetDefaults
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartStudies.html#ReferencesOtherChartsTagging
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartSettings.html#ChartUpdateInterval

Historical downloaded data received
Bid and ask data received
Market depth data received
Fundamental data received
New orders or order updates for the symbol and trade account the chart is set to.
Trade Position updates for the symbol and trade account the chart is set to.
When records are read from the chart data file during a Replay of an Intraday
chart
When using sc.UpdateAlways = 1
The Trade >> Trade Simulation Mode On state has been changed. This
causes a call because of the order related data for the chart has changed even
though there may not be any orders.

In these cases the study function will be called when the Chart Update Interval set in
Global Settings >> General Settings elapses, and not more often. Therefore, it does not
happen immediately upon, for example a new trade occurring for the symbol. It will be soon as
the Chart Update Interval has elapsed and there is new data which causes an update for one of
the given reasons.

During an accelerated Chart Replay, the Chart Update Interval is reduced internally to a shorter
time.

To access individual trades and bid/ask updates in between calls into the study function, use the
following functions:

sc.GetTimeAndSales
sc.GetTimeAndSalesForSymbol
sc.ReadIntradayFileRecordAtIndex
sc.ReadIntradayFileRecordForBarIndexAndSubIndex

If a study function takes longer to calculate than the Chart Update Interval, this will lead to
skipping of update calculations. For example, if a study takes 200 ms to calculate, which is a very
long time, and the Chart Update Interval is 100 ms, then there is going to be skipping of chart
updates as needed based on the study calculation time.

Study Function Calling and Threads

Study calculations, the calling of a study function, the updating of a chart, and the drawing of the
chart, all occurs on a single thread and this is the main thread of Sierra Chart.

Only one study function can run and be called at the same time. Each study is calculated one at a
time and according to a calculation order determined by Sierra Chart.

Browsing of Custom Studies in DLL

When a user selects Analysis >> Studies >> Add Custom Study , all of the found study
functions that begin with scsf_ in the DLL file are called with sc.SetDefaults set to true/1. This is
so the actual names of them can be discovered and listed to the user in the Add Custom Study

9

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetTimeAndSales
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scGetTimeAndSalesForSymbol
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scReadIntradayFileRecordAtIndex
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html#scReadIntradayFileRecordForBarIndexAndSubIndex
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartStudies.html#StudyCalculationPrecedence
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scSetDefaults

window.

Array Types
The following are descriptions of the different types of arrays used in the Advanced Custom Study
Interface and Language for study and main price graph Subgraphs.

When getting one of these arrays with the various ACSIL Functions for getting an array from a study or a
chart, a reference to the array is always made. Never in any case, is a copy made of the array.

SCFloatArray : This is an array of 4 byte float variables. This is the type of array used
with the sc.BaseData[] and sc.Subgraph[].Data arrays. This type of array is a reference
to an array which is internally allocated and maintained within Sierra Chart. It does not
contain a copy of the data. Only a reference to the data. The contents of this type of
array can be modified by the study function.
SCFloatArrayRef: This type is a reference to a SCFloatArray array. So it effectively
just directly references another array of float variables.
SCDateTimeArray: This is an array of SCDateTime variables. This is the type of array
used with the sc.BaseDateTimeIn[] array. This type of array is a reference to an array
which is internally allocated and maintained within Sierra Chart. It does not contain a
copy of the data. Only a reference to the data. The contents of this type of array can be
modified by the study function.
SCDateTimeArrayRef: This type is a reference to a SCDateTimeArray array. So it
effectively just directly references another array of SCDateTime variables.

Array Indexing in Trading DOM Windows
A Trading DOM window is opened through File >> Find Symbol >> Open Trading DOM . It is a chart
that consists of 1 chart bar which is not visible.

However, if it contains studies, then it contains more than one bar and the number of bars it contains is
going to be based upon the Chart >> Chart Settings .

The bar indexing and bar spacing in a Trading DOM window works just like any other chart. Although the
bars are just not visible. So therefore, all of the information on this page applies to a Trading DOM
window as well.

When Arrays are Cleared
All of the main price graph and study arrays in a chart are cleared when the chart is reloaded. For
example this happens when using Chart >> Reload and Recalculate .

The study arrays are cleared when making changes to studies through Analysis >> Studies .

*Last modified Monday, 17th July, 2023.

10

file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Functions.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDataIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_scSubgraph.html#scSubgraphData
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FSCDateTime.html
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FACSIL_Members_Variables_And_Arrays.html#scBaseDateTimeIn
file:///home/c/trading/SierraChartDocumentation/Descarga/index.php%253Fpage=doc%25252FChartTrading.html#TradeDOM

	Home >> (Table of Contents) Advanced Custom Study/System Interface and Language (ACSIL) >> Working with ACSIL Arrays and Understanding Looping
	Working with ACSIL Arrays and Understanding Looping
	Introduction
	Overview of sc.BaseData[][] sc.Subgraph[].Data[] sc.Subgraph[].Arrays[][]
	Array Indexing and Sizes
	Automatic Array Bounds Correction
	Automatic Looping/Iterating
	Manual Looping/Iterating
	More information about sc.UpdateStartIndex
	Example

	Example Code

	When the Study Function is Called
	Initial/First Call
	Full Calculation/Recalculations
	Update Study Function Calls
	Study Function Calling and Threads
	Browsing of Custom Studies in DLL

	Array Types
	Array Indexing in Trading DOM Windows
	When Arrays are Cleared

