Technical Studies Reference

Momentum with Moving Average

This study calculates and displays both the Momentum and a Simple Moving Average of the Momentum of the data specified by the Input Data Input. Refer to those studies for a full explanation of the notation used here.

In the expression \(M_t(X,n)\), \(n\) denotes the Input Momentum Length. This Input was simply called Length in the Momentum study.

We denote the Simple Moving Average of the Momentum as \(MA_t(M(X,n),n_{MA})\), where \(n_{MA}\) denotes the Moving Average Length, and \(M(X,n)\) is a random variable denoting the Momentum of Length \(n\) for the Input Data \(X\).

Both \(M_t(X,n)\) and \(MA_t(M(X,n),n_{MA})\) are displayed for \(t \geq n + n_{MA}\). In order to compute \(MA_{n + n_{MA}}(M(X,n),n_{MA})\), internal calculations of \(M_t(X,n)\) are executed for \(n \leq t < n + n_{MA}\), but these values are not displayed as output.


The spreadsheet below contains the formulas for this study in Spreadsheet format. Save this Spreadsheet to the Data Files Folder.

Open it through File >> Open Spreadsheet.


*Last modified Wednesday, 03rd January, 2018.